» Articles » PMID: 29118212

Delineating the Diversity of Spinal Interneurons in Locomotor Circuits

Overview
Journal J Neurosci
Specialty Neurology
Date 2017 Nov 10
PMID 29118212
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion.

Citing Articles

Arid3c identifies an uncharacterized subpopulation of V2 interneurons during embryonic spinal cord development.

Renaux E, Baudouin C, Schakman O, Gay O, Martin M, Marchese D Front Cell Neurosci. 2024; 18:1466056.

PMID: 39479525 PMC: 11521906. DOI: 10.3389/fncel.2024.1466056.


The transcriptomic landscape of spinal V1 interneurons reveals a role for En1 in specific elements of motor output.

Trevisan A, Han K, Chapman P, Kulkarni A, Hinton J, Ramirez C bioRxiv. 2024; .

PMID: 39345580 PMC: 11429899. DOI: 10.1101/2024.09.18.613279.


Spinal neuron diversity scales exponentially with swim-to-limb transformation during frog metamorphosis.

Vijatovic D, Toma F, Harrington Z, Sommer C, Hauschild R, Trevisan A bioRxiv. 2024; .

PMID: 39345366 PMC: 11430061. DOI: 10.1101/2024.09.20.614050.


Potential contribution of spinal interneurons to the etiopathogenesis of amyotrophic lateral sclerosis.

Goffin L, Lemoine D, Clotman F Front Neurosci. 2024; 18:1434404.

PMID: 39091344 PMC: 11293063. DOI: 10.3389/fnins.2024.1434404.


Investigation of central pattern generators in the spinal cord of chicken embryos.

Gutierrez-Ibanez C, Wylie D J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024; 210(5):801-814.

PMID: 38521869 PMC: 11384640. DOI: 10.1007/s00359-024-01694-6.


References
1.
SAUERESSIG H, Burrill J, Goulding M . Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. Development. 1999; 126(19):4201-12. DOI: 10.1242/dev.126.19.4201. View

2.
Pierani A, Sunshine M, Littman D, Goulding M, Jessell T . Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron. 2001; 29(2):367-84. DOI: 10.1016/s0896-6273(01)00212-4. View

3.
Kagawa T, SAUERESSIG H, Gross M, Burrill J, Goulding M . Evx1 is a postmitotic determinant of v0 interneuron identity in the spinal cord. Neuron. 2001; 29(2):385-99. DOI: 10.1016/s0896-6273(01)00213-6. View

4.
Jessell T . Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet. 2001; 1(1):20-9. DOI: 10.1038/35049541. View

5.
Jankowska E . Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J Physiol. 2001; 533(Pt 1):31-40. PMC: 2278593. DOI: 10.1111/j.1469-7793.2001.0031b.x. View