» Articles » PMID: 29101340

Cell-permeable Organic Fluorescent Probes for Live-cell Long-term Super-resolution Imaging Reveal Lysosome-mitochondrion Interactions

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Nov 5
PMID 29101340
Citations 67
Authors
Affiliations
Soon will be listed here.
Abstract

Characterizing the long-term nanometer-scale interactions between lysosomes and mitochondria in live cells is essential for understanding their functions but remains challenging due to limitations of the existing fluorescent probes. Here, we develop cell-permeable organic fluorescent probes for lysosomes with excellent specificity and high photostability. We also use an existing Atto 647N dye with high brightness and excellent photostability to achieve specific labeling of mitochondria in live cells. Using these probes, we obtain dual-color structured illumination microscopy (SIM) images of dynamic physical lysosome-mitochondrion interactions in live cells at an ~90-nm resolution over a long time course of ~13 min. We successfully record the consecutive dynamic processes of lysosomal fusion and fission, as well as four types of physical lysosome-mitochondrion interactions by super-resolution imaging. Our probes provide an avenue for understanding the functions and the dynamic interplay of lysosomes and mitochondria in live cells.

Citing Articles

Novel strategies targeting mitochondria-lysosome contact sites for the treatment of neurological diseases.

Xie Y, Sun W, Han A, Zhou X, Zhang S, Shen C Front Mol Neurosci. 2025; 17:1527013.

PMID: 39877141 PMC: 11772484. DOI: 10.3389/fnmol.2024.1527013.


Imaging interorganelle contacts at a glance.

Zanellati M, Hsu C, Cohen S J Cell Sci. 2024; 137(20).

PMID: 39440475 PMC: 11529887. DOI: 10.1242/jcs.262020.


A one-step protocol to generate impermeable fluorescent HaloTag substrates for live cell application and super-resolution imaging.

Rossmann K, Sun S, Olesen C, Kowald M, Tapp E, Pabst U bioRxiv. 2024; .

PMID: 39386703 PMC: 11463609. DOI: 10.1101/2024.09.20.614087.


A new perspective on the regulation of glucose and cholesterol transport by mitochondria-lysosome contact sites.

Chen X, Li C, Zhou X, Zhu M, Jin J, Wang P Front Physiol. 2024; 15:1431030.

PMID: 39290619 PMC: 11405319. DOI: 10.3389/fphys.2024.1431030.


Systems mapping of bidirectional endosomal transport through the crowded cell.

Jongsma M, Bakker N, Voortman L, Koning R, Bos E, Akkermans J Curr Biol. 2024; 34(19):4476-4494.e11.

PMID: 39276769 PMC: 11466077. DOI: 10.1016/j.cub.2024.08.026.


References
1.
Bolte S, Cordelieres F . A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2007; 224(Pt 3):213-32. DOI: 10.1111/j.1365-2818.2006.01706.x. View

2.
Fan F, Nie S, Yang D, Luo M, Shi H, Zhang Y . Labeling lysosomes and tracking lysosome-dependent apoptosis with a cell-permeable activity-based probe. Bioconjug Chem. 2012; 23(6):1309-17. DOI: 10.1021/bc300143p. View

3.
Miller A, Schafer J, Upchurch C, Spooner E, Huynh J, Hernandez S . Mucolipidosis type IV protein TRPML1-dependent lysosome formation. Traffic. 2014; 16(3):284-97. DOI: 10.1111/tra.12249. View

4.
Soubannier V, McLelland G, Zunino R, Braschi E, Rippstein P, Fon E . A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol. 2012; 22(2):135-41. DOI: 10.1016/j.cub.2011.11.057. View

5.
Li Z, Wu S, Han J, Han S . Imaging of intracellular acidic compartments with a sensitive rhodamine based fluorogenic pH sensor. Analyst. 2011; 136(18):3698-706. DOI: 10.1039/c1an15108h. View