Chemical Composition and Source Apportionment of PM at an Urban Background Site in a High-altitude Latin American Megacity (Bogota, Colombia)
Overview
Authors
Affiliations
Bogota registers frequent episodes of poor air quality from high PM concentrations. It is one of the main Latin American megacities, located at 2600 m in the tropical Andes, but there is insufficient data on PM source contribution. A characterization of the chemical composition and the source apportionment of PM at an urban background site in Bogota was carried out in this study. Daily samples were collected from June 2015 to May 2016 (a total of 311 samples). Organic carbon (OC), elemental carbon (EC), water soluble compounds (SO, Cl, NO, NH), major elements (Al, Fe, Mg, Ca, Na, K, P) and trace metals (V, Cd, Pb, Sr, Ba, among others) were analyzed. The results were interpreted in terms of their variability during the rainy season (RS) and the dry season (DS). The data obtained revealed that the carbonaceous fraction (∼51%) and mineral dust (23%) were the main PM components, followed by others (15%), Secondary Inorganic Compounds (SIC) (11%) and sea salt (0.4%). The average concentrations of soil, SIC and OC were higher during RS than DS. However, peak values were observed during the DS due to photochemical activity and forest fires. Although trace metals represented <1% of PM, high concentrations of toxic elements such as Pb and Sb on RS, and Cu on DS, were obtained. By using a PMF model, six factors were identified (∼96% PM) including fugitive dust, road dust, metal processing, secondary PM, vehicles exhaust and industrial emissions. Traffic (exhaust emissions + road dust) was the major PM source, accounting for ∼50% of the PM. The results provided novel data about PM chemical composition, its sources and its seasonal variability during the year, which can help the local government to define control strategies for the main emission sources during the most critical periods.
Seibert R, Kotlik B, Kazmarova H, Dombek V, Volna V, Hladky D Heliyon. 2024; 10(23):e40725.
PMID: 39691203 PMC: 11650297. DOI: 10.1016/j.heliyon.2024.e40725.
Short-Term Associations between PM and Respiratory Health Effects in Visby, Sweden.
Tornevi A, Olstrup H, Forsberg B Toxics. 2022; 10(6).
PMID: 35736941 PMC: 9227158. DOI: 10.3390/toxics10060333.
Habeebullah T, Munir S, Zeb J, Morsy E Toxics. 2022; 10(3).
PMID: 35324744 PMC: 8950437. DOI: 10.3390/toxics10030119.
Altuwayjiri A, Pirhadi M, Kalafy M, Alharbi B, Sioutas C Sci Total Environ. 2021; 806(Pt 2):150590.
PMID: 34597581 PMC: 8907835. DOI: 10.1016/j.scitotenv.2021.150590.
Assessment of metals in PM filters and needles in two areas of Quito, Ecuador.
Mancheno T, Zalakeviciute R, Gonzalez-Rodriguez M, Alexandrino K Heliyon. 2021; 7(1):e05966.
PMID: 33553731 PMC: 7855334. DOI: 10.1016/j.heliyon.2021.e05966.