» Articles » PMID: 29039919

The Molecular Tweezer CLR01 Stabilizes a Disordered Protein-Protein Interface

Abstract

Protein regions that are involved in protein-protein interactions (PPIs) very often display a high degree of intrinsic disorder, which is reduced during the recognition process. A prime example is binding of the rigid 14-3-3 adapter proteins to their numerous partner proteins, whose recognition motifs undergo an extensive disorder-to-order transition. In this context, it is highly desirable to control this entropy-costly process using tailored stabilizing agents. This study reveals how the molecular tweezer CLR01 tunes the 14-3-3/Cdc25CpS216 protein-protein interaction. Protein crystallography, biophysical affinity determination and biomolecular simulations unanimously deliver a remarkable finding: a supramolecular "Janus" ligand can bind simultaneously to a flexible peptidic PPI recognition motif and to a well-structured adapter protein. This binding fills a gap in the protein-protein interface, "freezes" one of the conformational states of the intrinsically disordered Cdc25C protein partner and enhances the apparent affinity of the interaction. This is the first structural and functional proof of a supramolecular ligand targeting a PPI interface and stabilizing the binding of an intrinsically disordered recognition motif to a rigid partner protein.

Citing Articles

N-Terminal Protein Binding and Disorder-to-Order Transition by a Synthetic Receptor.

Mockler N, Ramberg K, Flood R, Crowley P Biochemistry. 2025; 64(5):1092-1098.

PMID: 39977527 PMC: 11883740. DOI: 10.1021/acs.biochem.4c00729.


How Do Molecular Tweezers Bind to Proteins? Lessons from X-ray Crystallography.

Porfetye A, Stege P, Rebollido-Rios R, Hoffmann D, Schrader T, Vetter I Molecules. 2024; 29(8).

PMID: 38675584 PMC: 11051928. DOI: 10.3390/molecules29081764.


From Tethered to Freestanding Stabilizers of 14-3-3 Protein-Protein Interactions through Fragment Linking.

Visser E, Jaishankar P, Sijbesma E, Pennings M, Vandenboorn E, Guillory X Angew Chem Int Ed Engl. 2023; 62(37):e202308004.

PMID: 37455289 PMC: 11287480. DOI: 10.1002/anie.202308004.


Biophysical and Integrative Characterization of Protein Intrinsic Disorder as a Prime Target for Drug Discovery.

Luo S, Wohl S, Zheng W, Yang S Biomolecules. 2023; 13(3).

PMID: 36979465 PMC: 10046839. DOI: 10.3390/biom13030530.


Protein-protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction.

Rui H, Ashton K, Min J, Wang C, Potts P RSC Chem Biol. 2023; 4(3):192-215.

PMID: 36908699 PMC: 9994104. DOI: 10.1039/d2cb00207h.


References
1.
Bier D, Rose R, Bravo-Rodriguez K, Bartel M, Ramirez-Anguita J, Dutt S . Molecular tweezers modulate 14-3-3 protein-protein interactions. Nat Chem. 2013; 5(3):234-9. DOI: 10.1038/nchem.1570. View

2.
Meszaros B, Simon I, Dosztanyi Z . The expanding view of protein-protein interactions: complexes involving intrinsically disordered proteins. Phys Biol. 2011; 8(3):035003. DOI: 10.1088/1478-3975/8/3/035003. View

3.
Steuber H, Heine A, Klebe G . Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution. J Mol Biol. 2007; 368(3):618-38. DOI: 10.1016/j.jmb.2006.12.004. View

4.
van Dun S, Ottmann C, Milroy L, Brunsveld L . Supramolecular Chemistry Targeting Proteins. J Am Chem Soc. 2017; 139(40):13960-13968. PMC: 5639466. DOI: 10.1021/jacs.7b01979. View

5.
Forman-Kay J, Mittag T . From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure. 2013; 21(9):1492-9. PMC: 4704097. DOI: 10.1016/j.str.2013.08.001. View