» Articles » PMID: 29038385

Spectral Unmixing Techniques for Optoacoustic Imaging of Tissue Pathophysiology

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

A key feature of optoacoustic imaging is the ability to illuminate tissue at multiple wavelengths and therefore record images with a spectral dimension. While optoacoustic images at single wavelengths reveal morphological features, in analogy to ultrasound imaging or X-ray imaging, spectral imaging concedes sensing of intrinsic chromophores and externally administered agents that can reveal physiological, cellular and subcellular functions. Nevertheless, identification of spectral moieties within images obtained at multiple wavelengths requires spectral unmixing techniques, which present a unique mathematical problem given the three-dimensional nature of the optoacoustic images. Herein we discuss progress with spectral unmixing techniques developed for multispectral optoacoustic tomography. We explain how different techniques are required for accurate sensing of intrinsic tissue chromophores such as oxygenated and deoxygenated haemoglobin versus extrinsically administered photo-absorbing agents and nanoparticles. Finally, we review recent developments that allow accurate quantification of blood oxygen saturation (sO) by transforming and solving the sO estimation problem from the spatial to the spectral domain.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

Citing Articles

Application of multispectral optoacoustic tomography for lower limb musculoskeletal sports injuries in adults.

Svensson R, Agergaard A, Sardella T, Reichl C, Hjortshoej M, Bayer M Photoacoustics. 2025; 40:100656.

PMID: 40017825 PMC: 11866168. DOI: 10.1016/j.pacs.2024.100656.


Temporal dynamics of fluorescence and photoacoustic signals of a Cetuximab-IRDye800 conjugate in EGFR-overexpressing tumors.

Saad M, Allen D, Sweeney A, Xavierselvan M, Mallidi S, Hasan T bioRxiv. 2024; .

PMID: 39677759 PMC: 11642854. DOI: 10.1101/2024.11.26.625469.


Review on Photoacoustic Monitoring after Drug Delivery: From Label-Free Biomarkers to Pharmacokinetics Agents.

Kim J, Choi S, Kim C, Kim J, Park B Pharmaceutics. 2024; 16(10).

PMID: 39458572 PMC: 11510789. DOI: 10.3390/pharmaceutics16101240.


Controlling the sound of light: photoswitching optoacoustic imaging.

Stiel A, Ntziachristos V Nat Methods. 2024; 21(11):1996-2007.

PMID: 39322752 DOI: 10.1038/s41592-024-02396-2.


Learnable real-time inference of molecular composition from diffuse spectroscopy of brain tissue.

Ezhov I, Scibilia K, Giannoni L, Kofler F, Iliash I, Hsieh F J Biomed Opt. 2024; 29(9):093509.

PMID: 39318967 PMC: 11421663. DOI: 10.1117/1.JBO.29.9.093509.


References
1.
Deliolanis N, Ale A, Morscher S, Burton N, Schaefer K, Radrich K . Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview. Mol Imaging Biol. 2014; 16(5):652-60. DOI: 10.1007/s11307-014-0728-1. View

2.
Laufer J, Cox B, Zhang E, Beard P . Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme. Appl Opt. 2010; 49(8):1219-33. DOI: 10.1364/AO.49.001219. View

3.
Tzoumas S, Deliolanis N, Morscher S, Ntziachristos V . Unmixing Molecular Agents From Absorbing Tissue in Multispectral Optoacoustic Tomography. IEEE Trans Med Imaging. 2013; 33(1):48-60. DOI: 10.1109/TMI.2013.2279994. View

4.
Cox B, Laufer J, Arridge S, Beard P . Quantitative spectroscopic photoacoustic imaging: a review. J Biomed Opt. 2012; 17(6):061202. DOI: 10.1117/1.JBO.17.6.061202. View

5.
Luke G, Nam S, Emelianov S . Optical wavelength selection for improved spectroscopic photoacoustic imaging. Photoacoustics. 2014; 1(2):36-42. PMC: 4134901. DOI: 10.1016/j.pacs.2013.08.001. View