» Articles » PMID: 29025771

Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity After Adoptive Immunotherapy with CD19 CAR-T Cells

Abstract

Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19 cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity. We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. .

Citing Articles

CAR-T cells in the treatment of multiple myeloma: an encouraging cell therapy.

Yu T, Jiao J, Wu M Front Immunol. 2025; 16:1499590.

PMID: 40078993 PMC: 11897482. DOI: 10.3389/fimmu.2025.1499590.


Endothelial-leukocyte interaction in CAR T cell neurotoxicity.

Park L, Tsai Y, Lim H, Faulhaber L, Burleigh K, Faulhaber E bioRxiv. 2025; .

PMID: 40060404 PMC: 11888194. DOI: 10.1101/2025.02.19.638920.


Expanding the horizon of CAR T cell therapy: from cancer treatment to autoimmune diseases and beyond.

Yang Z, Ha B, Wu Q, Ren F, Yin Z, Zhang H Front Immunol. 2025; 16:1544532.

PMID: 40046061 PMC: 11880241. DOI: 10.3389/fimmu.2025.1544532.


Cellular Kinetics and Biodistribution of Adoptive T Cell Therapies: from Biological Principles to Effects on Patient Outcomes.

Li R, Grosskopf A, Joslyn L, Stefanich E, Shivva V AAPS J. 2025; 27(2):55.

PMID: 40032717 DOI: 10.1208/s12248-025-01017-w.


Outcome correlates of approved CD19-targeted CAR T cells for large B cell lymphoma.

Bock T, Colonne C, Fiorenza S, Turtle C Nat Rev Clin Oncol. 2025; .

PMID: 39966627 DOI: 10.1038/s41571-025-00992-5.


References
1.
Wu J, Fujikawa K, Lian E, McMullen B, Kulman J, Chung D . A rapid enzyme-linked assay for ADAMTS-13. J Thromb Haemost. 2006; 4(1):129-36. DOI: 10.1111/j.1538-7836.2005.01677.x. View

2.
Turtle C, Hanafi L, Berger C, Hudecek M, Pender B, Robinson E . Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016; 8(355):355ra116. PMC: 5045301. DOI: 10.1126/scitranslmed.aaf8621. View

3.
Lee D, Gardner R, Porter D, Louis C, Ahmed N, Jensen M . Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014; 124(2):188-95. PMC: 4093680. DOI: 10.1182/blood-2014-05-552729. View

4.
Higgins S, Purcell L, Silver K, Tran V, Crowley V, Hawkes M . Dysregulation of angiopoietin-1 plays a mechanistic role in the pathogenesis of cerebral malaria. Sci Transl Med. 2016; 8(358):358ra128. PMC: 6450386. DOI: 10.1126/scitranslmed.aaf6812. View

5.
Maude S, Frey N, Shaw P, Aplenc R, Barrett D, Bunin N . Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014; 371(16):1507-17. PMC: 4267531. DOI: 10.1056/NEJMoa1407222. View