» Articles » PMID: 28989710

Protein Microcrystallography Using Synchrotron Radiation

Overview
Journal IUCrJ
Date 2017 Oct 10
PMID 28989710
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

The progress in X-ray microbeam applications using synchrotron radiation is beneficial to structure determination from macromolecular microcrystals such as small crystals. However, the high intensity of microbeams causes severe radiation damage, which worsens both the statistical quality of diffraction data and their resolution, and in the worst cases results in the failure of structure determination. Even in the event of successful structure determination, site-specific damage can lead to the misinterpretation of structural features. In order to overcome this issue, technological developments in sample handling and delivery, data-collection strategy and data processing have been made. For a few crystals with dimensions of the order of 10 µm, an elegant two-step scanning strategy works well. For smaller samples, the development of a novel method to analyze multiple isomorphous microcrystals was motivated by the success of serial femtosecond crystallography with X-ray free-electron lasers. This method overcame the radiation-dose limit in diffraction data collection by using a sufficient number of crystals. Here, important technologies and the future prospects for microcrystallography are discussed.

Citing Articles

Macromolecular crystallography at SPring-8 and SACLA.

Yamamoto M, Kumasaka T J Synchrotron Radiat. 2025; 32(Pt 2):304-314.

PMID: 39964789 PMC: 11892910. DOI: 10.1107/S1600577525000657.


Useful experimental aspects of small-wedge synchrotron crystallography for accurate structure analysis of protein molecules.

Hirata K Acta Crystallogr D Struct Biol. 2024; 81(Pt 1):22-37.

PMID: 39718396 PMC: 11740584. DOI: 10.1107/S2059798324011987.


Bridging the microscopic divide: a comprehensive overview of micro-crystallization and in vivo crystallography.

Chavas L, Coulibaly F, Garriga D IUCrJ. 2024; 11(Pt 4):476-485.

PMID: 38958014 PMC: 11220871. DOI: 10.1107/S205225252400513X.


A streamlined approach to structure elucidation using in cellulo crystallized recombinant proteins, InCellCryst.

Schonherr R, Boger J, Lahey-Rudolph J, Harms M, Kaiser J, Nachtschatt S Nat Commun. 2024; 15(1):1709.

PMID: 38402242 PMC: 10894269. DOI: 10.1038/s41467-024-45985-7.


Electron counting with direct electron detectors in MicroED.

Hattne J, Clabbers M, Martynowycz M, Gonen T Structure. 2023; 31(12):1504-1509.e1.

PMID: 37992709 PMC: 10756876. DOI: 10.1016/j.str.2023.10.011.


References
1.
Owen R, Paterson N, Axford D, Aishima J, Schulze-Briese C, Ren J . Exploiting fast detectors to enter a new dimension in room-temperature crystallography. Acta Crystallogr D Biol Crystallogr. 2014; 70(Pt 5):1248-56. PMC: 4014120. DOI: 10.1107/S1399004714005379. View

2.
Hasegawa K, Shimizu N, Okumura H, Mizuno N, Baba S, Hirata K . SPring-8 BL41XU, a high-flux macromolecular crystallography beamline. J Synchrotron Radiat. 2013; 20(Pt 6):910-3. PMC: 3795554. DOI: 10.1107/S0909049513022176. View

3.
Sui S, Wang Y, Kolewe K, Srajer V, Henning R, Schiffman J . Graphene-based microfluidics for serial crystallography. Lab Chip. 2016; 16(16):3082-96. PMC: 4970872. DOI: 10.1039/c6lc00451b. View

4.
Mueller-Dieckmann C, Panjikar S, Tucker P, Weiss M . On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data-collection wavelength. Acta Crystallogr D Biol Crystallogr. 2005; 61(Pt 9):1263-72. DOI: 10.1107/S0907444905021475. View

5.
Garman E . Radiation damage in macromolecular crystallography: what is it and why should we care?. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):339-51. PMC: 2852297. DOI: 10.1107/S0907444910008656. View