» Articles » PMID: 28985931

Graph Theoretic Analysis of Resting State Functional MR Imaging

Overview
Specialties Neurology
Radiology
Date 2017 Oct 8
PMID 28985931
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Graph theoretic analyses applied to examine the brain at rest have played a critical role in clarifying the foundations of the brain's intrinsic and task-related activity. There are many opportunities for clinical scientists to describe and predict dysfunction using a network perspective. This primer describes the theoretic basis and practical application of graph theoretic analysis to resting state functional MR imaging data. Major practices, concepts, and findings are concisely reviewed. The theoretic and practical frontiers of resting state functional MR imaging are highlighted with observations about major avenues for conceptual advances and clinical translation.

Citing Articles

Crosstalk between the gut microbiota and brain network topology in poststroke aphasia patients: perspectives from neuroimaging findings.

Cao Y, Huang J, Zhang D, Ji J, Lei X, Tan Z Ther Adv Neurol Disord. 2025; 18:17562864251319870.

PMID: 39990867 PMC: 11846115. DOI: 10.1177/17562864251319870.


The role of spatial processing in verbal serial order working memory.

Tian Y, Fischer-Baum S Cogn Affect Behav Neurosci. 2025; 25(1):210-239.

PMID: 39815117 PMC: 11805787. DOI: 10.3758/s13415-024-01240-6.


Oculomotor functional connectivity associated with motor sequence learning.

Rubino C, Andrushko J, Rinat S, Harrison A, Boyd L Cereb Cortex. 2024; 34(11).

PMID: 39514340 PMC: 11546180. DOI: 10.1093/cercor/bhae434.


Disrupted Brain Network Measures in Parkinson's Disease Patients with Severe Hyposmia and Cognitively Normal Ability.

Siva K, Ponnusamy P, Ramanathan M Brain Sci. 2024; 14(7).

PMID: 39061425 PMC: 11274763. DOI: 10.3390/brainsci14070685.


Prediction of disease progression in individuals with subjective cognitive decline using brain network analysis.

Deng S, Tan S, Song X, Lin X, Yang K, Li X CNS Neurosci Ther. 2024; 30(7):e14859.

PMID: 39009557 PMC: 11250750. DOI: 10.1111/cns.14859.


References
1.
Honey C, Sporns O, Cammoun L, Gigandet X, Thiran J, Meuli R . Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A. 2009; 106(6):2035-40. PMC: 2634800. DOI: 10.1073/pnas.0811168106. View

2.
Murphy K, Birn R, Handwerker D, Jones T, Bandettini P . The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?. Neuroimage. 2008; 44(3):893-905. PMC: 2750906. DOI: 10.1016/j.neuroimage.2008.09.036. View

3.
Ciric R, Wolf D, Power J, Roalf D, Baum G, Ruparel K . Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage. 2017; 154:174-187. PMC: 5483393. DOI: 10.1016/j.neuroimage.2017.03.020. View

4.
Seeley W, Menon V, Schatzberg A, Keller J, Glover G, Kenna H . Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007; 27(9):2349-56. PMC: 2680293. DOI: 10.1523/JNEUROSCI.5587-06.2007. View

5.
Sacchet M, Prasad G, Foland-Ross L, Thompson P, Gotlib I . Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Front Psychiatry. 2015; 6:21. PMC: 4332161. DOI: 10.3389/fpsyt.2015.00021. View