» Articles » PMID: 28968631

Computational Approaches for Discovery of Mutational Signatures in Cancer

Overview
Journal Brief Bioinform
Specialty Biology
Date 2017 Oct 3
PMID 28968631
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The accumulation of somatic mutations in a genome is the result of the activity of one or more mutagenic processes, each of which leaves its own imprint. The study of these DNA fingerprints, termed mutational signatures, holds important potential for furthering our understanding of the causes and evolution of cancer, and can provide insights of relevance for cancer prevention and treatment. In this review, we focus our attention on the mathematical models and computational techniques that have driven recent advances in the field.

Citing Articles

Comprehensive cross cancer analyses reveal mutational signature cancer specificity.

Xin R, Jiang L, Yu H, Yan F, Tang J, Guo Y Quant Biol. 2025; 12(3):245-254.

PMID: 39949535 PMC: 11824353. DOI: 10.1002/qub2.49.


Topography of mutational signatures in non-small cell lung cancer: emerging concepts, clinical applications, and limitations.

Jayakrishnan R, Kwiatkowski D, Rose M, Nassar A Oncologist. 2024; 29(10):833-841.

PMID: 38907669 PMC: 11449018. DOI: 10.1093/oncolo/oyae091.


Model selection and robust inference of mutational signatures using Negative Binomial non-negative matrix factorization.

Pelizzola M, Laursen R, Hobolth A BMC Bioinformatics. 2023; 24(1):187.

PMID: 37158829 PMC: 10165836. DOI: 10.1186/s12859-023-05304-1.


Computational Methods Summarizing Mutational Patterns in Cancer: Promise and Limitations for Clinical Applications.

Patterson A, Elbasir A, Tian B, Auslander N Cancers (Basel). 2023; 15(7).

PMID: 37046619 PMC: 10093138. DOI: 10.3390/cancers15071958.


Spatial genomic diversity associated with APOBEC mutagenesis in squamous cell carcinoma arising from ovarian teratoma.

Tamura R, Nakaoka H, Yachida N, Ueda H, Ishiguro T, Motoyama T Cancer Sci. 2023; 114(5):2145-2157.

PMID: 36762791 PMC: 10154883. DOI: 10.1111/cas.15754.


References
1.
Krawczak M, Ball E, Cooper D . Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet. 1998; 63(2):474-88. PMC: 1377306. DOI: 10.1086/301965. View

2.
Kanu N, Cerone M, Goh G, Zalmas L, Bartkova J, Dietzen M . DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer. Genome Biol. 2016; 17(1):185. PMC: 5025597. DOI: 10.1186/s13059-016-1042-9. View

3.
Alexandrov L, Jones P, Wedge D, Sale J, Campbell P, Nik-Zainal S . Clock-like mutational processes in human somatic cells. Nat Genet. 2015; 47(12):1402-7. PMC: 4783858. DOI: 10.1038/ng.3441. View

4.
Goecks J, Nekrutenko A, Taylor J . Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010; 11(8):R86. PMC: 2945788. DOI: 10.1186/gb-2010-11-8-r86. View

5.
Alexandrov L, Stratton M . Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr Opin Genet Dev. 2014; 24:52-60. PMC: 3990474. DOI: 10.1016/j.gde.2013.11.014. View