» Articles » PMID: 28955870

Conformational Features of the AgrA-promoter Interactions Rationalize Quorum-sensing Triggered Gene Expression

Overview
Specialty Biochemistry
Date 2017 Sep 29
PMID 28955870
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The intracellular trigger for the quorum sensing response mechanism in involves the phosphorylation of the response regulator AgrA by the membrane anchored histidine kinase AgrC. AgrA activates transcription from three promoter sequences (P1-P3). The promoter strength, conditional association of AgrA with these promoter elements and temporal delay in AgrA-mediated changes in gene expression contribute to the diversity of the quorum sensing response in different strains. AgrA promoters comprise of imperfect direct repeats of DNA with a consensus sequence- [TA][AC][CA]GTTN[AG][TG]. Here we describe crystal structures of the DNA-binding (LytTR) domain of AgrA with different cognate DNA sequences that reveal a hitherto unanticipated feature of AgrA-DNA interactions. AgrA promoter interactions are asymmetric with fewer interactions at the binding site proximal to the -35 promoter element. Biochemical assays to evaluate AgrA-promoter interactions suggests that phosphorylation induced dimerization of AgrA can compensate for the asymmetry in AgrA-DNA interactions. The structures also provide a basis to rationalize mutations that were noted to alter AgrA activity without affecting protein-DNA interactions. Put together, the structural data, gene expression and mutational analysis reveal that promoter strength and AgrA phosphorylation enable quorum-sensing triggered transcriptional changes leading to a transition from the persistent to virulent phenotype.

Citing Articles

Investigations of microbial adaptation to singular, binary, and fully formulated quaternary ammonium compounds.

Willmott T, Kelly P, Jadaan L, Gifford D, Mercer S, Humphreys G Appl Environ Microbiol. 2024; 90(10):e0066624.

PMID: 39320084 PMC: 11497780. DOI: 10.1128/aem.00666-24.


Determinants of maturation of the autoinducing peptide.

Fang L, Cosgriff C, Alonzo 3rd F J Bacteriol. 2024; 206(9):e0019524.

PMID: 39177535 PMC: 11412329. DOI: 10.1128/jb.00195-24.


Modified oxylipins as inhibitors of biofilm formation in .

Peran J, Salvador-Reyes L Front Pharmacol. 2024; 15:1379643.

PMID: 38846101 PMC: 11153713. DOI: 10.3389/fphar.2024.1379643.


Chemical and biomolecular insights into the agr quorum sensing system: Current progress and ongoing challenges.

Polaske T, West K, Zhao K, Widner D, York J, Blackwell H Isr J Chem. 2024; 63(5-6).

PMID: 38765792 PMC: 11101167. DOI: 10.1002/ijch.202200096.


Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances.

Aboelnaga N, Elsayed S, Abdelsalam N, Salem S, Saif N, Elsayed M Cell Commun Signal. 2024; 22(1):188.

PMID: 38519959 PMC: 10958940. DOI: 10.1186/s12964-024-01511-2.


References
1.
Battye T, Kontogiannis L, Johnson O, Powell H, Leslie A . iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):271-81. PMC: 3069742. DOI: 10.1107/S0907444910048675. View

2.
Hanahan D . Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983; 166(4):557-80. DOI: 10.1016/s0022-2836(83)80284-8. View

3.
Ween O, Gaustad P, Havarstein L . Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol Microbiol. 1999; 33(4):817-27. DOI: 10.1046/j.1365-2958.1999.01528.x. View

4.
Reynolds J, Wigneshweraraj S . Molecular insights into the control of transcription initiation at the Staphylococcus aureus agr operon. J Mol Biol. 2011; 412(5):862-81. DOI: 10.1016/j.jmb.2011.06.018. View

5.
Lavery R, Moakher M, Maddocks J, Petkeviciute D, Zakrzewska K . Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res. 2009; 37(17):5917-29. PMC: 2761274. DOI: 10.1093/nar/gkp608. View