» Articles » PMID: 28939841

Large Room Temperature Spin-to-charge Conversion Signals in a Few-layer Graphene/Pt Lateral Heterostructure

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Sep 24
PMID 28939841
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Electrical generation and detection of pure spin currents without the need of magnetic materials are key elements for the realization of full electrically controlled spintronic devices. In this framework, achieving a large spin-to-charge conversion signal is crucial, as considerable outputs are needed for plausible applications. Unfortunately, the values obtained so far have been rather low. Here we exploit the spin Hall effect by using Pt, a non-magnetic metal with strong spin-orbit coupling, to generate and detect pure spin currents in a few-layer graphene channel. Furthermore, the outstanding properties of graphene, with long-distance spin transport and higher electrical resistivity than metals, allow us to achieve in our graphene/Pt lateral heterostructures the largest spin-to-charge output voltage at room temperature reported so far in the literature. Our approach opens up exciting opportunities towards the implementation of spin-orbit-based logic circuits and all electrical control of spin information without magnetic field.Spintronic devices with full electrical control rely on electrical generation and detection of spin currents in the absence of magnetic materials. Here, the authors use Pt, a non-magnetic metal, to generate and detect pure spin currents in a few-layer graphene channel, achieving a remarkable spin-to-charge voltage signal at room temperature.

Citing Articles

Ultrafast lattice dynamics and electron-phonon coupling in platinum extracted with a global fitting approach for time-resolved polycrystalline diffraction data.

Zahn D, Seiler H, Windsor Y, Ernstorfer R Struct Dyn. 2021; 8(6):064301.

PMID: 34805449 PMC: 8594951. DOI: 10.1063/4.0000120.


Spin-Orbit Torque in Van der Waals-Layered Materials and Heterostructures.

Tang W, Liu H, Li Z, Pan A, Zeng Y Adv Sci (Weinh). 2021; 8(18):e2100847.

PMID: 34323390 PMC: 8456225. DOI: 10.1002/advs.202100847.


Spintronics in Two-Dimensional Materials.

Liu Y, Zeng C, Zhong J, Ding J, Wang Z, Liu Z Nanomicro Lett. 2021; 12(1):93.

PMID: 34138100 PMC: 7770708. DOI: 10.1007/s40820-020-00424-2.


Rational design principles for giant spin Hall effect in -transition metal oxides.

Jadaun P, Register L, Banerjee S Proc Natl Acad Sci U S A. 2020; 117(22):11878-11886.

PMID: 32424094 PMC: 7275749. DOI: 10.1073/pnas.1922556117.


Interface morphology effect on the spin mixing conductance of Pt/FeO bilayers.

Pham T, Ribeiro M, Park J, Lee N, Kang K, Park E Sci Rep. 2018; 8(1):13907.

PMID: 30224773 PMC: 6141513. DOI: 10.1038/s41598-018-31915-3.


References
1.
Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S . Room-temperature reversible spin Hall effect. Phys Rev Lett. 2007; 98(15):156601. DOI: 10.1103/PhysRevLett.98.156601. View

2.
Yang T, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J . Observation of long spin-relaxation times in bilayer graphene at room temperature. Phys Rev Lett. 2011; 107(4):047206. DOI: 10.1103/PhysRevLett.107.047206. View

3.
Choi W, Kim H, Chang J, Han S, Koo H, Johnson M . Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect. Nat Nanotechnol. 2015; 10(8):666-70. DOI: 10.1038/nnano.2015.107. View

4.
Yan W, Phillips L, Barbone M, Hamalainen S, Lombardo A, Ghidini M . Long Spin Diffusion Length in Few-Layer Graphene Flakes. Phys Rev Lett. 2016; 117(14):147201. DOI: 10.1103/PhysRevLett.117.147201. View

5.
Raes B, Scheerder J, Costache M, Bonell F, Sierra J, Cuppens J . Determination of the spin-lifetime anisotropy in graphene using oblique spin precession. Nat Commun. 2016; 7:11444. PMC: 4865811. DOI: 10.1038/ncomms11444. View