» Articles » PMID: 25857650

Long Distance Spin Communication in Chemical Vapour Deposited Graphene

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Apr 11
PMID 25857650
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Graphene is an ideal medium for long-distance spin communication in future spintronic technologies. So far, the prospect is limited by the smaller sizes of exfoliated graphene flakes and lower spin transport properties of large-area chemical vapour-deposited (CVD) graphene. Here we demonstrate a high spintronic performance in CVD graphene on SiO2/Si substrate at room temperature. We show pure spin transport and precession over long channel lengths extending up to 16 μm with a spin lifetime of 1.2 ns and a spin diffusion length ∼6 μm at room temperature. These spin parameters are up to six times higher than previous reports and highest at room temperature for any form of pristine graphene on industrial standard SiO2/Si substrates. Our detailed investigation reinforces the observed performance in CVD graphene over wafer scale and opens up new prospects for the development of lateral spin-based memory and logic applications.

Citing Articles

Strong In-Plane Magnetization and Spin Polarization in (CoFe)GeTe/Graphene van der Waals Heterostructure Spin-Valve at Room Temperature.

Ngaloy R, Zhao B, Ershadrad S, Gupta R, Davoudiniya M, Bainsla L ACS Nano. 2024; .

PMID: 38330915 PMC: 10883121. DOI: 10.1021/acsnano.3c07462.


Ultralong 100 ns spin relaxation time in graphite at room temperature.

Markus B, Gmitra M, Dora B, Csosz G, Feher T, Szirmai P Nat Commun. 2023; 14(1):2831.

PMID: 37198155 PMC: 10192359. DOI: 10.1038/s41467-023-38288-w.


Flexible transparent graphene laminates direct lamination of graphene onto polyethylene naphthalate substrates.

Serrano I, Panda J, Edvinsson T, Kamalakar M Nanoscale Adv. 2022; 2(8):3156-3163.

PMID: 36134291 PMC: 9416925. DOI: 10.1039/d0na00046a.


Insights and Implications of Intricate Surface Charge Transfer and sp-Defects in Graphene/Metal Oxide Interfaces.

Belotcerkovtceva D, Maciel R, Berggren E, Maddu R, Sarkar T, Kvashnin Y ACS Appl Mater Interfaces. 2022; 14(31):36209-36216.

PMID: 35867345 PMC: 9376919. DOI: 10.1021/acsami.2c06626.


Observation of giant spin-orbit interaction in graphene and heavy metal heterostructures.

Afzal A, Min K, Ko B, Eom J RSC Adv. 2022; 9(54):31797-31805.

PMID: 35527934 PMC: 9072641. DOI: 10.1039/c9ra06961e.


References
1.
Cummings A, Duong D, Nguyen V, Van Tuan D, Kotakoski J, Barrios Vargas J . Charge transport in polycrystalline graphene: challenges and opportunities. Adv Mater. 2014; 26(30):5079-94. DOI: 10.1002/adma.201401389. View

2.
Ochoa H, Neto A, Guinea F . Elliot-Yafet mechanism in graphene. Phys Rev Lett. 2012; 108(20):206808. DOI: 10.1103/PhysRevLett.108.206808. View

3.
Ogawa Y, Komatsu K, Kawahara K, Tsuji M, Tsukagoshi K, Ago H . Structure and transport properties of the interface between CVD-grown graphene domains. Nanoscale. 2014; 6(13):7288-94. DOI: 10.1039/c3nr06828e. View

4.
Song H, Li S, Miyazaki H, Sato S, Hayashi K, Yamada A . Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci Rep. 2012; 2:337. PMC: 3313616. DOI: 10.1038/srep00337. View

5.
Yazyev O, Louie S . Electronic transport in polycrystalline graphene. Nat Mater. 2010; 9(10):806-9. DOI: 10.1038/nmat2830. View