» Articles » PMID: 28917089

The Trehalose-specific Transporter LpqY-SugABC is Required for Antimicrobial and Anti-biofilm Activity of Trehalose Analogues in Mycobacterium Smegmatis

Overview
Journal Carbohydr Res
Publisher Elsevier
Date 2017 Sep 17
PMID 28917089
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Mycobacteria, including the bacterial pathogen that causes human tuberculosis, possess distinctive pathways for synthesizing and utilizing the non-mammalian disaccharide trehalose. Trehalose metabolism is essential for mycobacterial viability and has been linked to in vitro biofilm formation, which may bear relevance to in vivo drug tolerance. Previous research has shown that some trehalose analogues bearing modifications at the 6-position inhibit growth of various mycobacterial species. In this work, 2-, 5-, and 6-position-modified trehalose analogues were synthesized using our previously reported one-step chemoenzymatic method and shown to inhibit growth and biofilm formation in the two-to three-digit micromolar range in Mycobacterium smegmatis. The trehalose-specific ABC transporter LpqY-SugABC was essential for antimicrobial and anti-biofilm activity, suggesting that inhibition by monosubstituted trehalose analogues requires cellular uptake and does not proceed via direct action on extracellular targets such as antigen 85 acyltransferases or trehalose dimycolate hydrolase. Although the potency of the described compounds in in vitro growth and biofilm assays is moderate, this study reports the first trehalose-based mycobacterial biofilm inhibitors and reinforces the concept of exploiting unique sugar uptake pathways to deliver inhibitors and other chemical cargo to mycobacteria.

Citing Articles

Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments.

Liu X, Hu J, Wang W, Yang H, Tao E, Ma Y Int J Mol Sci. 2024; 25(14).

PMID: 39063012 PMC: 11277187. DOI: 10.3390/ijms25147771.


Intracellular Protective Functions and Therapeutical Potential of Trehalose.

Kuczynska-Wisnik D, Stojowska-Swedrzynska K, Laskowska E Molecules. 2024; 29(9).

PMID: 38731579 PMC: 11085779. DOI: 10.3390/molecules29092088.


Targeting Persistence through Inhibition of the Trehalose Catalytic Shift.

Kalera K, Liu R, Lim J, Pathirage R, Swanson D, Johnson U ACS Infect Dis. 2024; 10(4):1391-1404.

PMID: 38485491 PMC: 11019547. DOI: 10.1021/acsinfecdis.4c00138.


Chemical remodeling of the mycomembrane with chain-truncated lipids sensitizes mycobacteria to rifampicin.

Gaidhane I, Biegas K, Erickson H, Agarwal P, Chhonker Y, Ronning D Chem Commun (Camb). 2023; 59(93):13859-13862.

PMID: 37929833 PMC: 10872977. DOI: 10.1039/d3cc02364h.


Molecular recognition of trehalose and trehalose analogues by LpqY-SugABC.

Liang J, Liu F, Xu P, Shangguan W, Hu T, Wang S Proc Natl Acad Sci U S A. 2023; 120(35):e2307625120.

PMID: 37603751 PMC: 10466184. DOI: 10.1073/pnas.2307625120.


References
1.
Recht J, Martinez A, Torello S, Kolter R . Genetic analysis of sliding motility in Mycobacterium smegmatis. J Bacteriol. 2000; 182(15):4348-51. PMC: 101957. DOI: 10.1128/JB.182.15.4348-4351.2000. View

2.
Recht J, Kolter R . Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol. 2001; 183(19):5718-24. PMC: 95464. DOI: 10.1128/JB.183.19.5718-5724.2001. View

3.
Rose J, Maddry J, Comber R, Suling W, Wilson L, Reynolds R . Synthesis and biological evaluation of trehalose analogs as potential inhibitors of mycobacterial cell wall biosynthesis. Carbohydr Res. 2002; 337(2):105-20. DOI: 10.1016/s0008-6215(01)00288-9. View

4.
Teng R, Dick T . Isoniazid resistance of exponentially growing Mycobacterium smegmatis biofilm culture. FEMS Microbiol Lett. 2003; 227(2):171-4. DOI: 10.1016/S0378-1097(03)00584-6. View

5.
Wang J, Elchert B, Hui Y, Takemoto J, Bensaci M, Wennergren J . Synthesis of trehalose-based compounds and their inhibitory activities against Mycobacterium smegmatis. Bioorg Med Chem. 2004; 12(24):6397-413. DOI: 10.1016/j.bmc.2004.09.033. View