» Articles » PMID: 28901832

Chemical Biology Approaches for Studying Posttranslational Modifications

Overview
Journal RNA Biol
Specialty Molecular Biology
Date 2017 Sep 14
PMID 28901832
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Posttranslational modification (PTM) is a key mechanism for regulating diverse protein functions, and thus critically affects many essential biological processes. Critical for systematic study of the effects of PTMs is the ability to obtain recombinant proteins with defined and homogenous modifications. To this end, various synthetic and chemical biology approaches, including genetic code expansion and protein chemical modification methods, have been developed. These methods have proven effective for generating site-specific authentic modifications or structural mimics, and have demonstrated their value for in vitro and in vivo functional studies of diverse PTMs. This review will discuss recent advances in chemical biology strategies and their application to various PTM studies.

Citing Articles

Cardiac Tyrosine 97 Phosphorylation of Cytochrome Regulates Respiration and Apoptosis.

Morse P, Pasupathi V, Vuljaj S, Yazdi N, Zurek M, Wan J Int J Mol Sci. 2025; 26(3).

PMID: 39941082 PMC: 11818311. DOI: 10.3390/ijms26031314.


Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.

Dunkelmann D, Chin J Chem Rev. 2024; 124(19):11008-11062.

PMID: 39235427 PMC: 11467909. DOI: 10.1021/acs.chemrev.4c00243.


Kinetic Resolution of Epimeric Proteins Enables Stereoselective Chemical Mutagenesis.

Ablat G, Lawton N, Alam R, Haynes B, Hossain S, Hicks T J Am Chem Soc. 2024; 146(32):22622-22628.

PMID: 39083370 PMC: 11328163. DOI: 10.1021/jacs.4c07103.


Orthogonal Translation for Site-Specific Installation of Post-translational Modifications.

Gan Q, Fan C Chem Rev. 2024; 124(5):2805-2838.

PMID: 38373737 PMC: 11230630. DOI: 10.1021/acs.chemrev.3c00850.


Analysis of Structural Changes in the Protein near the Phosphorylation Site.

Nikolsky K, Kulikova L, Petrovskiy D, Rudnev V, Malsagova K, Kaysheva A Biomolecules. 2023; 13(11).

PMID: 38002246 PMC: 10668964. DOI: 10.3390/biom13111564.


References
1.
Yau R, Rape M . The increasing complexity of the ubiquitin code. Nat Cell Biol. 2016; 18(6):579-86. DOI: 10.1038/ncb3358. View

2.
Simon M, Chu F, Racki L, de la Cruz C, Burlingame A, Panning B . The site-specific installation of methyl-lysine analogs into recombinant histones. Cell. 2007; 128(5):1003-12. PMC: 2932701. DOI: 10.1016/j.cell.2006.12.041. View

3.
Hancock S, Uprety R, Deiters A, Chin J . Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J Am Chem Soc. 2010; 132(42):14819-24. PMC: 2956376. DOI: 10.1021/ja104609m. View

4.
Huang R, Holbert M, Tarrant M, Curtet S, Colquhoun D, Dancy B . Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J Am Chem Soc. 2010; 132(29):9986-7. PMC: 2912447. DOI: 10.1021/ja103954u. View

5.
DiDonato J, Aulak K, Huang Y, Wagner M, Gerstenecker G, Topbas C . Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J Biol Chem. 2014; 289(15):10276-10292. PMC: 4036153. DOI: 10.1074/jbc.M114.556506. View