» Articles » PMID: 28553966

Biosynthesis and Genetic Encoding of Phosphothreonine Through Parallel Selection and Deep Sequencing

Overview
Journal Nat Methods
Date 2017 May 30
PMID 28553966
Citations 80
Authors
Affiliations
Soon will be listed here.
Abstract

The phosphorylation of threonine residues in proteins regulates diverse processes in eukaryotic cells, and thousands of threonine phosphorylations have been identified. An understanding of how threonine phosphorylation regulates biological function will be accelerated by general methods to biosynthesize defined phosphoproteins. Here we describe a rapid approach for directly discovering aminoacyl-tRNA synthetase-tRNA pairs that selectively incorporate non-natural amino acids into proteins; our method uses parallel positive selections combined with deep sequencing and statistical analysis and enables the direct, scalable discovery of aminoacyl-tRNA synthetase-tRNA pairs with mutually orthogonal substrate specificity. By combining a method to biosynthesize phosphothreonine in cells with this selection approach, we discover a phosphothreonyl-tRNA synthetase-tRNA pair and create an entirely biosynthetic route to incorporating phosphothreonine in proteins. We biosynthesize several phosphoproteins and demonstrate phosphoprotein structure determination and synthetic protein kinase activation.

Citing Articles

Genetic Code Expansion: Recent Developments and Emerging Applications.

Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X Chem Rev. 2024; 125(2):523-598.

PMID: 39737807 PMC: 11758808. DOI: 10.1021/acs.chemrev.4c00216.


Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.

De Faveri C, Mattheisen J, Sakmar T, Coin I Chem Rev. 2024; 124(22):12498-12550.

PMID: 39509680 PMC: 11613316. DOI: 10.1021/acs.chemrev.4c00181.


Genetic Code Expansion Approaches to Decipher the Ubiquitin Code.

Wanka V, Fottner M, Cigler M, Lang K Chem Rev. 2024; 124(20):11544-11584.

PMID: 39311880 PMC: 11503651. DOI: 10.1021/acs.chemrev.4c00375.


Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.

Dunkelmann D, Chin J Chem Rev. 2024; 124(19):11008-11062.

PMID: 39235427 PMC: 11467909. DOI: 10.1021/acs.chemrev.4c00243.


Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.

Niu W, Guo J Chem Rev. 2024; 124(18):10577-10617.

PMID: 39207844 PMC: 11470805. DOI: 10.1021/acs.chemrev.3c00938.


References
1.
Mahajan A, Yuan C, Lee H, Chen E, Wu P, Tsai M . Structure and function of the phosphothreonine-specific FHA domain. Sci Signal. 2008; 1(51):re12. DOI: 10.1126/scisignal.151re12. View

2.
Zhao Y, Lai H, Tang H, Chen W, Lin H . Prediction of phosphothreonine sites in human proteins by fusing different features. Sci Rep. 2016; 6:34817. PMC: 5048138. DOI: 10.1038/srep34817. View

3.
Park H, Hohn M, Umehara T, Guo L, Osborne E, Benner J . Expanding the genetic code of Escherichia coli with phosphoserine. Science. 2011; 333(6046):1151-4. PMC: 5547737. DOI: 10.1126/science.1207203. View

4.
Giege R, Sissler M, Florentz C . Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 1998; 26(22):5017-35. PMC: 147952. DOI: 10.1093/nar/26.22.5017. View

5.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View