» Articles » PMID: 28883433

In Situ Wrapping of the Cathode Material in Lithium-sulfur Batteries

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Sep 9
PMID 28883433
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

While lithium-sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barrier layer. However, there is a trade-off between a perfect preassembled wrapping layer and electrolyte infiltration into the wrapped sulfur cathode. Here, we demonstrate an in situ wrapping approach to construct a compact layer on carbon/sulfur composite particles with an imperfect wrapping layer. This special configuration suppresses the shuttle effect while allowing polysulfide diffusion within the interior of the wrapped composite particles. As a result, the wrapped cathode for lithium-sulfur batteries greatly improves the Coulombic efficiency and cycle life. Importantly, the capacity decay of the cell at 1000 cycles is as small as 0.03% per cycle at 1672 mA g.To suppress the polysulfide shuttling effect in Li-S batteries, here the authors report a carbon/sulfur composite cathode with a wrapping layer that overcomes the trade-off between limiting polysulfide diffusion and allowing electrolyte infiltration, and affords extraordinary cycling stability.

Citing Articles

Tailoring Cathode-Electrolyte Interface for High-Power and Stable Lithium-Sulfur Batteries.

Liu M, Hu L, Guan Z, Chen T, Zhang X, Sun S Nanomicro Lett. 2024; 17(1):85.

PMID: 39630287 PMC: 11618559. DOI: 10.1007/s40820-024-01573-4.


Sulfur/carbon cathode material chemistry and morphology optimisation for lithium-sulfur batteries.

Safdar T, Huang C RSC Adv. 2024; 14(42):30743-30755.

PMID: 39328875 PMC: 11425154. DOI: 10.1039/d4ra04740k.


Conducting polymer-coated MIL-101/S composite with scale-like shell structure for improving Li-S batteries.

Jin W, Li H, Zou J, Zeng S, Li Q, Xu G RSC Adv. 2022; 8(9):4786-4793.

PMID: 35539531 PMC: 9077768. DOI: 10.1039/c7ra12800b.


Three-dimensional ordered macroporous ZIF-8 nanoparticle-derived nitrogen-doped hierarchical porous carbons for high-performance lithium-sulfur batteries.

Ji X, Li Q, Yu H, Hu X, Luo Y, Li B RSC Adv. 2022; 10(69):41983-41992.

PMID: 35516741 PMC: 9057854. DOI: 10.1039/d0ra07114e.


Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries.

Lei J, Fan X, Liu T, Xu P, Hou Q, Li K Nat Commun. 2022; 13(1):202.

PMID: 35017484 PMC: 8752791. DOI: 10.1038/s41467-021-27866-5.


References
1.
Hu H, Cheng H, Liu Z, Li G, Zhu Q, Yu Y . In Situ Polymerized PAN-Assisted S/C Nanosphere with Enhanced High-Power Performance as Cathode for Lithium/Sulfur Batteries. Nano Lett. 2015; 15(8):5116-23. DOI: 10.1021/acs.nanolett.5b01294. View

2.
Jia H, Wang J, Lin F, Monroe C, Yang J, NuLi Y . TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes. Chem Commun (Camb). 2014; 50(53):7011-3. DOI: 10.1039/c4cc01151a. View

3.
Chung W, Simmonds A, Griebel J, Kim E, Suh H, Shim I . Elemental sulfur as a reactive medium for gold nanoparticles and nanocomposite materials. Angew Chem Int Ed Engl. 2011; 50(48):11409-12. DOI: 10.1002/anie.201104237. View

4.
Manthiram A, Fu Y, Chung S, Zu C, Su Y . Rechargeable lithium-sulfur batteries. Chem Rev. 2014; 114(23):11751-87. DOI: 10.1021/cr500062v. View

5.
Li W, Zheng G, Yang Y, Seh Z, Liu N, Cui Y . High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc Natl Acad Sci U S A. 2013; 110(18):7148-53. PMC: 3645569. DOI: 10.1073/pnas.1220992110. View