High-performance Hollow Sulfur Nanostructured Battery Cathode Through a Scalable, Room Temperature, One-step, Bottom-up Approach
Overview
Affiliations
Sulfur is an exciting cathode material with high specific capacity of 1,673 mAh/g, more than five times the theoretical limits of its transition metal oxides counterpart. However, successful applications of sulfur cathode have been impeded by rapid capacity fading caused by multiple mechanisms, including large volume expansion during lithiation, dissolution of intermediate polysulfides, and low ionic/electronic conductivity. Tackling the sulfur cathode problems requires a multifaceted approach, which can simultaneously address the challenges mentioned above. Herein, we present a scalable, room temperature, one-step, bottom-up approach to fabricate monodisperse polymer (polyvinylpyrrolidone)-encapsulated hollow sulfur nanospheres for sulfur cathode, allowing unprecedented control over electrode design from nanoscale to macroscale. We demonstrate high specific discharge capacities at different current rates (1,179, 1,018, and 990 mAh/g at C/10, C/5, and C/2, respectively) and excellent capacity retention of 77.6% (at C/5) and 73.4% (at C/2) after 300 and 500 cycles, respectively. Over a long-term cycling of 1,000 cycles at C/2, a capacity decay as low as 0.046% per cycle and an average coulombic efficiency of 98.5% was achieved. In addition, a simple modification on the sulfur nanosphere surface with a layer of conducting polymer, poly(3,4-ethylenedioxythiophene), allows the sulfur cathode to achieve excellent high-rate capability, showing a high reversible capacity of 849 and 610 mAh/g at 2C and 4C, respectively.
Yan M, Dong W, Liu F, Chen L, Hasan T, Li Y Natl Sci Rev. 2022; 9(7):nwac078.
PMID: 35832774 PMC: 9273299. DOI: 10.1093/nsr/nwac078.
Mesoporous TiO coating on carbon-sulfur cathode for high capacity Li-sulfur battery.
Dharmasena R, Thapa A, Hona R, Jasinski J, Sunkara M, Sumanasekera G RSC Adv. 2022; 8(21):11622-11632.
PMID: 35542775 PMC: 9079043. DOI: 10.1039/c8ra01380b.
Ali A, Jamal R, Abdiryim T RSC Adv. 2022; 11(53):33425-33430.
PMID: 35497524 PMC: 9042313. DOI: 10.1039/d1ra06732j.
Polymers in Lithium-Sulfur Batteries.
Zhang Q, Huang Q, Hao S, Deng S, He Q, Lin Z Adv Sci (Weinh). 2021; 9(2):e2103798.
PMID: 34741443 PMC: 8805586. DOI: 10.1002/advs.202103798.
Bertolini S, Jacob T ACS Omega. 2021; 6(14):9700-9708.
PMID: 33869950 PMC: 8047702. DOI: 10.1021/acsomega.0c06240.