» Articles » PMID: 28873503

Large-scale NMR Simulations in Liquid State: A Tutorial

Overview
Journal Magn Reson Chem
Specialty Chemistry
Date 2017 Sep 6
PMID 28873503
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Liquid state nuclear magnetic resonance is the only class of magnetic resonance experiments for which the simulation problem is solved comprehensively for spin systems of any size. This paper contains a practical walkthrough for one of the many available simulation packages - Spinach. Its unique feature is polynomial complexity scaling: the ability to simulate large spin systems quantum mechanically and with accurate account of relaxation, diffusion, chemical processes, and hydrodynamics. This paper is a gentle introduction written with a PhD student in mind.

Citing Articles

Neural net analysis of NMR spectra from strongly-coupled spin systems.

Prestegard J, Boons G, Chopra P, Glushka J, Grimes Jr J, Simon B J Magn Reson. 2024; 368:107792.

PMID: 39490301 PMC: 11573630. DOI: 10.1016/j.jmr.2024.107792.


Exploring CHEMeDATA. An interview with Damien Jeannerat: What is the CHEMeDATA movement?.

Jeannerat D, Trevorrow P Anal Sci Adv. 2024; 1(4):254-257.

PMID: 38716386 PMC: 10989152. DOI: 10.1002/ansa.202000041.


Replication of the bSTAR sequence and open-source implementation.

Lee N, Bauman G, Bieri O, Nayak K Magn Reson Med. 2023; 91(4):1464-1477.

PMID: 38044680 PMC: 10872427. DOI: 10.1002/mrm.29947.


Digital quantum simulation of NMR experiments.

Seetharam K, Biswas D, Noel C, Risinger A, Zhu D, Katz O Sci Adv. 2023; 9(46):eadh2594.

PMID: 37976365 PMC: 10656062. DOI: 10.1126/sciadv.adh2594.


The Incorporation of Labile Protons into Multidimensional NMR Analyses: Glycan Structures Revisited.

Novakovic M, Battistel M, Azurmendi H, Concilio M, Freedberg D, Frydman L J Am Chem Soc. 2021; 143(23):8935-8948.

PMID: 34085814 PMC: 8297728. DOI: 10.1021/jacs.1c04512.


References
1.
Kuprov I, Hodgson D, Kloesges J, Pearson C, Odell B, Claridge T . Anomalous nuclear Overhauser effects in carbon-substituted aziridines: scalar cross-relaxation of the first kind. Angew Chem Int Ed Engl. 2015; 54(12):3697-701. PMC: 4506550. DOI: 10.1002/anie.201410271. View

2.
Vosegaard T, Nielsen N . Defining the sampling space in multidimensional NMR experiments: what should the maximum sampling time be?. J Magn Reson. 2009; 199(2):146-58. DOI: 10.1016/j.jmr.2009.04.007. View

3.
Kuprov I . Fokker-Planck formalism in magnetic resonance simulations. J Magn Reson. 2016; 270:124-135. DOI: 10.1016/j.jmr.2016.07.005. View

4.
Krzystyniak M, Edwards L, Kuprov I . Destination state screening of active spaces in spin dynamics simulations. J Magn Reson. 2011; 210(2):228-32. DOI: 10.1016/j.jmr.2011.03.010. View

5.
Kuprov I . Diagonalization-free implementation of spin relaxation theory for large spin systems. J Magn Reson. 2011; 209(1):31-8. DOI: 10.1016/j.jmr.2010.12.004. View