» Articles » PMID: 28855617

Colossal Permittivity Behavior and Its Origin in Rutile (MgTa)TiO

Overview
Journal Sci Rep
Specialty Science
Date 2017 Sep 1
PMID 28855617
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

This work investigates the synthesis, chemical composition, defect structures and associated dielectric properties of (Mg, Ta) co-doped rutile TiO polycrystalline ceramics with nominal compositions of (MgTa) Ti O. Colossal permittivity (>7000) with a low dielectric loss (e.g. 0.002 at 1 kHz) across a broad frequency/temperature range can be achieved at x = 0.5% after careful optimization of process conditions. Both experimental and theoretical evidence indicates such a colossal permittivity and low dielectric loss intrinsically originate from the intragrain polarization that links to the electron-pinned [Formula: see text] defect clusters with a specific configuration, different from the defect cluster form previously reported in tri-/pent-valent ion co-doped rutile TiO. This work extends the research on colossal permittivity and defect formation to bi-/penta-valent ion co-doped rutile TiO and elucidates a likely defect cluster model for this system. We therefore believe these results will benefit further development of colossal permittivity materials and advance the understanding of defect chemistry in solids.

Citing Articles

DFT calculations and giant dielectric responses in (NiNb)TiO.

Thongyong N, Thongbai P, Srepusharawoot P RSC Adv. 2023; 13(45):31844-31854.

PMID: 37920200 PMC: 10619632. DOI: 10.1039/d3ra06541c.


Giant Dielectric Properties of W-Doped TiO Ceramics.

Siriya P, Moontragoon P, Srepusharawoot P, Thongbai P Molecules. 2022; 27(19).

PMID: 36235067 PMC: 9573295. DOI: 10.3390/molecules27196529.


Colossal dielectric permittivity, reduced loss tangent and the microstructure of Ca Cd CuTiO F ceramics.

Boonlakhorn J, Prachamon J, Manyam J, Krongsuk S, Thongbai P, Srepusharawoot P RSC Adv. 2022; 11(27):16396-16403.

PMID: 35479167 PMC: 9029990. DOI: 10.1039/d1ra02707g.


Improved microstructure and significantly enhanced dielectric properties of Al/Cr/Ta triple-doped TiO ceramics by Re-balancing charge compensation.

Siriya P, Pengpad A, Srepusharawoot P, Chanlek N, Thongbai P RSC Adv. 2022; 12(8):4946-4954.

PMID: 35425479 PMC: 8981224. DOI: 10.1039/d1ra08847e.


Engineering the Defects and Microstructures in Ferroelectrics for Enhanced/Novel Properties: An Emerging Way to Cope with Energy Crisis and Environmental Pollution.

Dong W, Xiao H, Jia Y, Chen L, Geng H, Bakhtiar S Adv Sci (Weinh). 2022; 9(13):e2105368.

PMID: 35240724 PMC: 9069204. DOI: 10.1002/advs.202105368.


References
1.
Hu W, Liu Y, Withers R, Frankcombe T, Noren L, Snashall A . Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater. 2013; 12(9):821-6. DOI: 10.1038/nmat3691. View

2.
Song Y, Wang X, Sui Y, Liu Z, Zhang Y, Zhan H . Origin of colossal dielectric permittivity of rutile Ti₀.₉In₀.₀₅Nb₀.₀₅O₂: single crystal and polycrystalline. Sci Rep. 2016; 6:21478. PMC: 4751469. DOI: 10.1038/srep21478. View

3.
Li J, Li F, Li C, Yang G, Xu Z, Zhang S . Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics. Sci Rep. 2015; 5:8295. PMC: 4319151. DOI: 10.1038/srep08295. View

4.
Dong W, Hu W, Berlie A, Lau K, Chen H, Withers R . Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2. ACS Appl Mater Interfaces. 2015; 7(45):25321-5. DOI: 10.1021/acsami.5b07467. View

5.
Tsuji K, Han H, Guillemet-Fritsch S, Randall C . Dielectric relaxation and localized electron hopping in colossal dielectric (Nb,In)-doped TiO rutile nanoceramics. Phys Chem Chem Phys. 2017; 19(12):8568-8574. DOI: 10.1039/c7cp00042a. View