Mahmud E, Mollik S, Islam M
PLoS One. 2025; 19(12):e0309469.
PMID: 39775150
PMC: 11684599.
DOI: 10.1371/journal.pone.0309469.
Thongyong N, Thongbai P, Srepusharawoot P
RSC Adv. 2023; 13(45):31844-31854.
PMID: 37920200
PMC: 10619632.
DOI: 10.1039/d3ra06541c.
Meeporn K, Chanlek N, Srepusharawoot P, Thongbai P
Heliyon. 2023; 9(2):e13583.
PMID: 36846669
PMC: 9947097.
DOI: 10.1016/j.heliyon.2023.e13583.
Duong N, Jang J, Jung M, Bae J, Ahn C, Jin J
Sci Adv. 2023; 9(8):eadd8328.
PMID: 36827373
PMC: 9956132.
DOI: 10.1126/sciadv.add8328.
MacManus-Driscoll J, Wu R, Li W
Mater Horiz. 2023; 10(4):1060-1086.
PMID: 36815609
PMC: 10068909.
DOI: 10.1039/d2mh01527g.
Coupling between γ-irradiation and synchrotron-radiation-based XAFS techniques for studying Mn-doped ZnO nanoparticles.
Imam N, Harfouche M, Azab A, Solyman S
J Synchrotron Radiat. 2022; 29(Pt 5):1187-1197.
PMID: 36073877
PMC: 9455205.
DOI: 10.1107/S1600577522006439.
Significant enhancement of dielectric permittivity and percolation behaviour of La Sr NiO/poly(vinylidene fluoride) composites with different Sr doping concentrations.
Meeporn K, Chanlek N, Thongbai P
RSC Adv. 2022; 10(5):2747-2756.
PMID: 35496094
PMC: 9048383.
DOI: 10.1039/c9ra09719h.
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry.
Vasylenko A, Gamon J, Duff B, Gusev V, Daniels L, Zanella M
Nat Commun. 2021; 12(1):5561.
PMID: 34548485
PMC: 8455628.
DOI: 10.1038/s41467-021-25343-7.
Determining the dielectric constant of injection-molded polymer-matrix nanocomposites filled with barium titanate.
Brito D, Quirarte G, Morgan J, Rackoff E, Fernandez M, Ganjam D
MRS Commun. 2021; 10(4):587-593.
PMID: 33398238
PMC: 7773014.
DOI: 10.1557/mrc.2020.69.
Origin of colossal dielectric response in (In + Nb) co-doped TiO rutile ceramics: a potential electrothermal material.
Ke S, Li T, Ye M, Lin P, Yuan W, Zeng X
Sci Rep. 2017; 7(1):10144.
PMID: 28860639
PMC: 5579281.
DOI: 10.1038/s41598-017-10562-0.
Colossal permittivity behavior and its origin in rutile (MgTa)TiO.
Dong W, Chen D, Hu W, Frankcombe T, Chen H, Zhou C
Sci Rep. 2017; 7(1):9950.
PMID: 28855617
PMC: 5577065.
DOI: 10.1038/s41598-017-08992-x.
Intrinsic Enhancement of Dielectric Permittivity in (Nb + In) co-doped TiO single crystals.
Kawarasaki M, Tanabe K, Terasaki I, Fujii Y, Taniguchi H
Sci Rep. 2017; 7(1):5351.
PMID: 28706304
PMC: 5509748.
DOI: 10.1038/s41598-017-05651-z.
Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate.
Sun Q, Gu Q, Zhu K, Jin R, Liu J, Wang J
Sci Rep. 2017; 7:42274.
PMID: 28205559
PMC: 5304219.
DOI: 10.1038/srep42274.
Origin of colossal dielectric permittivity of rutile Ti₀.₉In₀.₀₅Nb₀.₀₅O₂: single crystal and polycrystalline.
Song Y, Wang X, Sui Y, Liu Z, Zhang Y, Zhan H
Sci Rep. 2016; 6:21478.
PMID: 26869187
PMC: 4751469.
DOI: 10.1038/srep21478.
Criticality of metals and metalloids.
Graedel T, Harper E, Nassar N, Nuss P, Reck B
Proc Natl Acad Sci U S A. 2015; 112(14):4257-62.
PMID: 25831527
PMC: 4394315.
DOI: 10.1073/pnas.1500415112.
Electron-pinned defect-dipoles for high-performance colossal permittivity materials.
Hu W, Liu Y, Withers R, Frankcombe T, Noren L, Snashall A
Nat Mater. 2013; 12(9):821-6.
PMID: 23812129
DOI: 10.1038/nmat3691.