» Articles » PMID: 28853212

Tissue Glycomics Distinguish Tumour Sites in Women with Advanced Serous Adenocarcinoma

Overview
Journal Mol Oncol
Date 2017 Aug 31
PMID 28853212
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

In the era of precision medicine, the tailoring of cancer treatment is increasingly important as we transition from organ-based diagnosis towards a more comprehensive and patient-centric molecular diagnosis. This is particularly the case for high-grade serous adenocarcinomas of the ovary and peritoneum, which are commonly diagnosed at an advanced stage, and collectively treated and managed similarly. We characterized the N- and O-glycome of serous ovarian (OC) and peritoneal cancer (PC) tissues using PGC-LC-ESI-IT-MS/MS profiling and validated the discriminatory glycans and their corresponding glyco-gene expression levels using cell lines and transcriptomic data from 232 patients. Overall, the N- and O-glycan repertoires of both cancer types were found to comprise mostly of α2,6-sialylated glycan structures, with the majority of N-glycans displaying the biantennary mono- and disialylation as well as bisecting-type biantennary glycans. The MS profiling by PGC-LC also revealed several glycan structural isomers that corresponded to LacdiNAc-type (GalNAcβ1-4GlcNAc) motifs that were unique to the serous ovarian cancers and that correlated with elevated gene expression of B4GALNT3 and B4GALNT4 in patients with serous cancer. Statistical evaluation of the discriminatory glycans also revealed 13 N- and 3 O-glycans (P < 0.05) that significantly discriminated tumour-sampling sites, with LacdiNAc-type N-glycans (m/z 1205.0 and m/z 1059.4 ) being associated with ovarian-derived cancer tissue and bisecting GlcNAc-type (m/z 994.9 ) and branched N-glycans (m/z 1294.0 and m/z 1148.4 ) upregulated at the metastatic sites. Hence, we demonstrate for the first time that OC and PC display distinct molecular signatures at both their glycomic and transcriptomic levels. These signatures may have potential utility for the development of accurate diagnosis and personalized treatments.

Citing Articles

Highly Sensitive Spatial Glycomics at Near-Cellular Resolution by On-Slide Derivatization and Mass Spectrometry Imaging.

Cumin C, Gee L, Litfin T, Muchabaiwa R, Martin G, Cooper O Anal Chem. 2024; 96(28):11163-11171.

PMID: 38953530 PMC: 11256013. DOI: 10.1021/acs.analchem.3c05984.


Biosynthesis and Biological Significances of LacdiNAc Group on - and -Glycans in Human Cancer Cells.

Hirano K, Furukawa K Biomolecules. 2022; 12(2).

PMID: 35204696 PMC: 8961560. DOI: 10.3390/biom12020195.


Precision N-glycoproteomics reveals elevated LacdiNAc as a novel signature of intrahepatic cholangiocarcinoma.

Li J, Zhao T, Li J, Shen J, Jia L, Zhu B Mol Oncol. 2021; 16(11):2135-2152.

PMID: 34855283 PMC: 9168967. DOI: 10.1002/1878-0261.13147.


In-House Packed Porous Graphitic Carbon Columns for Liquid Chromatography-Mass Spectrometry Analysis of Glycans.

Young C, Condina M, Briggs M, Moh E, Kaur G, Oehler M Front Chem. 2021; 9:653959.

PMID: 34178940 PMC: 8226321. DOI: 10.3389/fchem.2021.653959.


Clinical Perspective on Proteomic and Glycomic Biomarkers for Diagnosis, Prognosis, and Prediction of Pancreatic Cancer.

Hanna-Sawires R, Schiphuis J, Wuhrer M, Vasen H, van Leerdam M, Bonsing B Int J Mol Sci. 2021; 22(5).

PMID: 33800786 PMC: 7961509. DOI: 10.3390/ijms22052655.


References
1.
Hirano K, Matsuda A, Shirai T, Furukawa K . Expression of LacdiNAc groups on N-glycans among human tumors is complex. Biomed Res Int. 2014; 2014:981627. PMC: 4066867. DOI: 10.1155/2014/981627. View

2.
Abbott K, Nairn A, Hall E, Horton M, McDonald J, Moremen K . Focused glycomic analysis of the N-linked glycan biosynthetic pathway in ovarian cancer. Proteomics. 2008; 8(16):3210-20. PMC: 3970323. DOI: 10.1002/pmic.200800157. View

3.
Kawamura Y, Toyota M, Kawashima R, Hagiwara T, Suzuki H, Imai K . DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology. 2008; 135(1):142-151.e3. DOI: 10.1053/j.gastro.2008.03.031. View

4.
Bandera C, Muto M, Schorge J, Berkowitz R, Rubin S, Mok S . BRCA1 gene mutations in women with papillary serous carcinoma of the peritoneum. Obstet Gynecol. 1998; 92(4 Pt 1):596-600. DOI: 10.1016/s0029-7844(98)00223-3. View

5.
Jacob F, Goldstein D, Bovin N, Pochechueva T, Spengler M, Caduff R . Serum antiglycan antibody detection of nonmucinous ovarian cancers by using a printed glycan array. Int J Cancer. 2011; 130(1):138-46. PMC: 3137667. DOI: 10.1002/ijc.26002. View