» Articles » PMID: 28852099

Intermolecular Base Stacking Mediates RNA-RNA Interaction in a Crystal Structure of the RNA Chaperone Hfq

Overview
Journal Sci Rep
Specialty Science
Date 2017 Aug 31
PMID 28852099
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The RNA-chaperone Hfq catalyses the annealing of bacterial small RNAs (sRNAs) with target mRNAs to regulate gene expression in response to environmental stimuli. Hfq acts on a diverse set of sRNA-mRNA pairs using a variety of different molecular mechanisms. Here, we present an unusual crystal structure showing two Hfq-RNA complexes interacting via their bound RNA molecules. The structure contains two Hfq:A RNA assemblies positioned face-to-face, with the RNA molecules turned towards each other and connected via interdigitating base stacking interactions at the center. Biochemical data further confirm the observed interaction, and indicate that RNA-mediated contacts occur between Hfq-RNA complexes with various (ARN) motif containing RNA sequences in vitro, including the stress response regulator OxyS and its target, fhlA. A systematic computational survey also shows that phylogenetically conserved (ARN) motifs are present in a subset of sRNAs, some of which share similar modular architectures. We hypothesise that Hfq can co-opt RNA-RNA base stacking, an unanticipated structural trick, to promote the interaction of (ARN) motif containing sRNAs with target mRNAs on a "speed-dating" fashion, thereby supporting their regulatory function.

Citing Articles

Advances in chaperone-assisted RNA crystallography using synthetic antibodies.

Banna H, Das N, Ojha M, Koirala D BBA Adv. 2023; 4:100101.

PMID: 37655005 PMC: 10466895. DOI: 10.1016/j.bbadva.2023.100101.


Spatial arrangement of functional domains in OxyS stress response sRNA.

Stih V, Amenitsch H, Plavec J, Podbevsek P RNA. 2023; 29(10):1520-1534.

PMID: 37380360 PMC: 10578473. DOI: 10.1261/rna.079618.123.


Computational Insights into the Binding Mechanism of OxyS sRNA with Chaperone Protein Hfq.

Li M, Cong Y, Qi Y, Zhang J Biomolecules. 2021; 11(11).

PMID: 34827651 PMC: 8615722. DOI: 10.3390/biom11111653.


The Amyloid Region of Hfq Riboregulator Promotes DsrA: RNAs Annealing.

Turbant F, Wu P, Wien F, Arluison V Biology (Basel). 2021; 10(9).

PMID: 34571778 PMC: 8468756. DOI: 10.3390/biology10090900.


MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes.

Krepl M, Dendooven T, Luisi B, Sponer J J Biol Chem. 2021; 296:100656.

PMID: 33857481 PMC: 8121710. DOI: 10.1016/j.jbc.2021.100656.


References
1.
Beisel C, Updegrove T, Janson B, Storz G . Multiple factors dictate target selection by Hfq-binding small RNAs. EMBO J. 2012; 31(8):1961-74. PMC: 3343335. DOI: 10.1038/emboj.2012.52. View

2.
Papenfort K, Bouvier M, Mika F, Sharma C, Vogel J . Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA. Proc Natl Acad Sci U S A. 2010; 107(47):20435-40. PMC: 2996696. DOI: 10.1073/pnas.1009784107. View

3.
Bobrovskyy M, Vanderpool C . Regulation of bacterial metabolism by small RNAs using diverse mechanisms. Annu Rev Genet. 2013; 47:209-32. DOI: 10.1146/annurev-genet-111212-133445. View

4.
Waterhouse A, Procter J, Martin D, Clamp M, Barton G . Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009; 25(9):1189-91. PMC: 2672624. DOI: 10.1093/bioinformatics/btp033. View

5.
Vincent H, Henderson C, Ragan T, Garza-Garcia A, Cary P, Gowers D . Characterization of Vibrio cholerae Hfq provides novel insights into the role of the Hfq C-terminal region. J Mol Biol. 2012; 420(1-2):56-69. PMC: 3477312. DOI: 10.1016/j.jmb.2012.03.028. View