» Articles » PMID: 28802040

Aged Stem Cells Reprogram Their Daily Rhythmic Functions to Adapt to Stress

Abstract

Normal homeostatic functions of adult stem cells have rhythmic daily oscillations that are believed to become arrhythmic during aging. Unexpectedly, we find that aged mice remain behaviorally circadian and that their epidermal and muscle stem cells retain a robustly rhythmic core circadian machinery. However, the oscillating transcriptome is extensively reprogrammed in aged stem cells, switching from genes involved in homeostasis to those involved in tissue-specific stresses, such as DNA damage or inefficient autophagy. Importantly, deletion of circadian clock components did not reproduce the hallmarks of this reprogramming, underscoring that rewiring, rather than arrhythmia, is associated with physiological aging. While age-associated rewiring of the oscillatory diurnal transcriptome is not recapitulated by a high-fat diet in young adult mice, it is significantly prevented by long-term caloric restriction in aged mice. Thus, stem cells rewire their diurnal timed functions to adapt to metabolic cues and to tissue-specific age-related traits.

Citing Articles

Immunomodulatory role of the stem cell circadian clock in muscle repair.

Zhu P, Pfrender E, Steffeck A, Reczek C, Zhou Y, Thakkar A Sci Adv. 2025; 11(10):eadq8538.

PMID: 40043110 PMC: 11881903. DOI: 10.1126/sciadv.adq8538.


Ablation of satellite cell-specific clock gene, Bmal1, alters force production, muscle damage, and repair following contractile-induced injury.

Kahn R, Zhu P, Roy I, Peek C, Hawley J, Dayanidhi S FASEB J. 2025; 39(2):e70325.

PMID: 39812604 PMC: 11734708. DOI: 10.1096/fj.202402145RR.


Circadian clock communication during homeostasis and ageing.

Mortimer T, Smith J, Munoz-Canoves P, Benitah S Nat Rev Mol Cell Biol. 2025; .

PMID: 39753699 DOI: 10.1038/s41580-024-00802-3.


Metabolic regulation in adult and aging skeletal muscle stem cells.

Sartorelli V, Ciuffoli V Genes Dev. 2024; 39(3-4):186-208.

PMID: 39662967 PMC: 11789647. DOI: 10.1101/gad.352277.124.


The genetically programmed rhythmic alteration of diurnal gene expression in the aged leaves.

Jung S, Kim H, Lee J, Kang M, Kim J, Kim J Front Plant Sci. 2024; 15:1481682.

PMID: 39559769 PMC: 11570267. DOI: 10.3389/fpls.2024.1481682.