» Articles » PMID: 28784151

A Statistical Framework for Analyzing Deep Mutational Scanning Data

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2017 Aug 9
PMID 28784151
Citations 116
Authors
Affiliations
Soon will be listed here.
Abstract

Deep mutational scanning is a widely used method for multiplex measurement of functional consequences of protein variants. We developed a new deep mutational scanning statistical model that generates error estimates for each measurement, capturing both sampling error and consistency between replicates. We apply our model to one novel and five published datasets comprising 243,732 variants and demonstrate its superiority in removing noisy variants and conducting hypothesis testing. Simulations show our model applies to scans based on cell growth or binding and handles common experimental errors. We implemented our model in Enrich2, software that can empower researchers analyzing deep mutational scanning data.

Citing Articles

Mapping kinase domain resistance mechanisms for the MET receptor tyrosine kinase via deep mutational scanning.

Estevam G, Linossi E, Rao J, Macdonald C, Ravikumar A, Chrispens K Elife. 2025; 13.

PMID: 39960754 PMC: 11832172. DOI: 10.7554/eLife.101882.


Curated loci prime editing (cliPE) for accessible multiplexed assays of variant effect (MAVEs).

Biar C, Bodkin N, Carvill G, Calhoun J ArXiv. 2025; .

PMID: 39867423 PMC: 11759852.


A quantitative intracellular peptide-binding assay reveals recognition determinants and context dependence of short linear motifs.

Subbanna M, Winters M, Ord M, Davey N, Pryciak P J Biol Chem. 2025; 301(3):108225.

PMID: 39864625 PMC: 11879687. DOI: 10.1016/j.jbc.2025.108225.


MaveDB 2024: a curated community database with over seven million variant effects from multiplexed functional assays.

Rubin A, Stone J, Bianchi A, Capodanno B, Da E, Dias M Genome Biol. 2025; 26(1):13.

PMID: 39838450 PMC: 11753097. DOI: 10.1186/s13059-025-03476-y.


Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations.

Funk J, Klimovich M, Drangenstein D, Pielhoop O, Hunold P, Borowek A Nat Genet. 2025; 57(1):140-153.

PMID: 39774325 PMC: 11735402. DOI: 10.1038/s41588-024-02039-4.


References
1.
Brockmann E . Selection of stable scFv antibodies by phage display. Methods Mol Biol. 2012; 907:123-44. DOI: 10.1007/978-1-61779-974-7_7. View

2.
Rich M, Payen C, Rubin A, Ong G, Sanchez M, Yachie N . Comprehensive Analysis of the SUL1 Promoter of Saccharomyces cerevisiae. Genetics. 2016; 203(1):191-202. PMC: 4858773. DOI: 10.1534/genetics.116.188037. View

3.
Jiang L, Liu P, Bank C, Renzette N, Prachanronarong K, Yilmaz L . A Balance between Inhibitor Binding and Substrate Processing Confers Influenza Drug Resistance. J Mol Biol. 2015; 428(3):538-553. DOI: 10.1016/j.jmb.2015.11.027. View

4.
Kowalsky C, Klesmith J, Stapleton J, Kelly V, Reichkitzer N, Whitehead T . High-resolution sequence-function mapping of full-length proteins. PLoS One. 2015; 10(3):e0118193. PMC: 4366243. DOI: 10.1371/journal.pone.0118193. View

5.
Melamed D, Young D, Gamble C, Miller C, Fields S . Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein. RNA. 2013; 19(11):1537-51. PMC: 3851721. DOI: 10.1261/rna.040709.113. View