» Articles » PMID: 28770852

Quantum Simulation of a Fermi-Hubbard Model Using a Semiconductor Quantum Dot Array

Overview
Journal Nature
Specialty Science
Date 2017 Aug 4
PMID 28770852
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

Citing Articles

Three-Phase Confusion Learning.

Caleca F, Tibaldi S, Ercolessi E Entropy (Basel). 2025; 27(2).

PMID: 40003196 PMC: 11854615. DOI: 10.3390/e27020199.


Moiré band structure engineering using a twisted boron nitride substrate.

Wang X, Xu C, Aronson S, Bennett D, Paul N, Crowley P Nat Commun. 2025; 16(1):178.

PMID: 39747828 PMC: 11696911. DOI: 10.1038/s41467-024-55432-2.


Universal control of four singlet-triplet qubits.

Zhang X, Morozova E, Rimbach-Russ M, Jirovec D, Hsiao T, Farina P Nat Nanotechnol. 2024; 20(2):209-215.

PMID: 39482413 PMC: 11835736. DOI: 10.1038/s41565-024-01817-9.


Robust poor man's Majorana zero modes using Yu-Shiba-Rusinov states.

Zatelli F, van Driel D, Xu D, Wang G, Liu C, Bordin A Nat Commun. 2024; 15(1):7933.

PMID: 39256344 PMC: 11387613. DOI: 10.1038/s41467-024-52066-2.


Sweet-spot operation of a germanium hole spin qubit with highly anisotropic noise sensitivity.

Hendrickx N, Massai L, Mergenthaler M, Schupp F, Paredes S, Bedell S Nat Mater. 2024; 23(7):920-927.

PMID: 38760518 PMC: 11230914. DOI: 10.1038/s41563-024-01857-5.


References
1.
Baart T, Shafiei M, Fujita T, Reichl C, Wegscheider W, Vandersypen L . Single-spin CCD. Nat Nanotechnol. 2016; 11(4):330-4. DOI: 10.1038/nnano.2015.291. View

2.
DiCarlo L, Lynch H, Johnson A, Childress L, Crockett K, Marcus C . Differential charge sensing and charge delocalization in a tunable double quantum dot. Phys Rev Lett. 2004; 92(22):226801. DOI: 10.1103/PhysRevLett.92.226801. View

3.
Seo M, Choi H, Lee S, Kim N, Chung Y, Sim H . Charge frustration in a triangular triple quantum dot. Phys Rev Lett. 2014; 110(4):046803. DOI: 10.1103/PhysRevLett.110.046803. View

4.
Veldhorst M, Hwang J, Yang C, Leenstra A, de Ronde B, Dehollain J . An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat Nanotechnol. 2014; 9(12):981-5. DOI: 10.1038/nnano.2014.216. View

5.
Barends R, Lamata L, Kelly J, Garcia-Alvarez L, Fowler A, Megrant A . Digital quantum simulation of fermionic models with a superconducting circuit. Nat Commun. 2015; 6:7654. PMC: 4510643. DOI: 10.1038/ncomms8654. View