» Articles » PMID: 28747659

Porcine Familial Adenomatous Polyposis Model Enables Systematic Analysis of Early Events in Adenoma Progression

Abstract

We compared gene expression in low and high-grade intraepithelial dysplastic polyps from pigs carrying an APC truncating mutation orthologous to human APC , analysing whole samples and microdissected dysplastic epithelium. Gene set enrichment analysis revealed differential expression of gene sets similar to human normal mucosa versus T1 stage polyps. Transcriptome analysis of whole samples revealed many differentially-expressed genes reflecting immune infiltration. Analysis of microdissected dysplastic epithelium was markedly different and showed increased expression in high-grade intraepithelial neoplasia of several genes known to be involved in human CRC; and revealed possible new roles for GBP6 and PLXND1. The pig model thus facilitates analysis of CRC pathogenesis.

Citing Articles

Overview of research progress and application of experimental models of colorectal cancer.

Liu L, Yan Q, Chen Z, Wei X, Li L, Tang D Front Pharmacol. 2023; 14:1193213.

PMID: 37469864 PMC: 10352992. DOI: 10.3389/fphar.2023.1193213.


Identification of transcriptional regulatory variants in pig duodenum, liver, and muscle tissues.

Crespo-Piazuelo D, Acloque H, Gonzalez-Rodriguez O, Mongellaz M, Mercat M, Bink M Gigascience. 2023; 12.

PMID: 37354463 PMC: 10290502. DOI: 10.1093/gigascience/giad042.


Use of Translational, Genetically Modified Porcine Models to Ultimately Improve Intestinal Disease Treatment.

Schaaf C, Gonzalez L Front Vet Sci. 2022; 9:878952.

PMID: 35669174 PMC: 9164269. DOI: 10.3389/fvets.2022.878952.


Wild-type APC Influences the Severity of Familial Adenomatous Polyposis.

Flisikowski K, Perleberg C, Niu G, Winogrodzki T, Bak A, Liang W Cell Mol Gastroenterol Hepatol. 2021; 13(2):669-671.e3.

PMID: 34774804 PMC: 8777002. DOI: 10.1016/j.jcmgh.2021.11.002.


Swine models for translational oncological research: an evolving landscape and regulatory considerations.

Boettcher A, Schachtschneider K, Schook L, Tuggle C Mamm Genome. 2021; 33(1):230-240.

PMID: 34476572 PMC: 8888764. DOI: 10.1007/s00335-021-09907-y.


References
1.
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-50. PMC: 1239896. DOI: 10.1073/pnas.0506580102. View

2.
Crabtree M, Tomlinson I, Hodgson S, Neale K, Phillips R, Houlston R . Explaining variation in familial adenomatous polyposis: relationship between genotype and phenotype and evidence for modifier genes. Gut. 2002; 51(3):420-3. PMC: 1773342. DOI: 10.1136/gut.51.3.420. View

3.
Lee I, Sohn M, Lim H, Yoon S, Oh H, Shin S . Ahnak functions as a tumor suppressor via modulation of TGFβ/Smad signaling pathway. Oncogene. 2014; 33(38):4675-84. PMC: 4180639. DOI: 10.1038/onc.2014.69. View

4.
Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov J, Tamayo P . The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2016; 1(6):417-425. PMC: 4707969. DOI: 10.1016/j.cels.2015.12.004. View

5.
Roodink I, Verrijp K, Raats J, Leenders W . Plexin D1 is ubiquitously expressed on tumor vessels and tumor cells in solid malignancies. BMC Cancer. 2009; 9:297. PMC: 2739226. DOI: 10.1186/1471-2407-9-297. View