» Articles » PMID: 27398792

A Recellularized Human Colon Model Identifies Cancer Driver Genes

Abstract

Refined cancer models are needed to bridge the gaps between cell line, animal and clinical research. Here we describe the engineering of an organotypic colon cancer model by recellularization of a native human matrix that contains cell-populated mucosa and an intact muscularis mucosa layer. This ex vivo system recapitulates the pathophysiological progression from APC-mutant neoplasia to submucosal invasive tumor. We used it to perform a Sleeping Beauty transposon mutagenesis screen to identify genes that cooperate with mutant APC in driving invasive neoplasia. We identified 38 candidate invasion-driver genes, 17 of which, including TCF7L2, TWIST2, MSH2, DCC, EPHB1 and EPHB2 have been previously implicated in colorectal cancer progression. Six invasion-driver genes that have not, to our knowledge, been previously described were validated in vitro using cell proliferation, migration and invasion assays and ex vivo using recellularized human colon. These results demonstrate the utility of our organoid model for studying cancer biology.

Citing Articles

Advances in the application of colorectal cancer organoids in precision medicine.

Zhang Y, Meng R, Sha D, Gao H, Wang S, Zhou J Front Oncol. 2024; 14:1506606.

PMID: 39697234 PMC: 11653019. DOI: 10.3389/fonc.2024.1506606.


Potential Use of Organoids in Regenerative Medicine.

Septiana W, Pawitan J Tissue Eng Regen Med. 2024; 21(8):1125-1139.

PMID: 39412646 PMC: 11589048. DOI: 10.1007/s13770-024-00672-y.


Advancements in 3D In Vitro Models for Colorectal Cancer.

Vitale S, Calapa F, Colonna F, Luongo F, Biffoni M, De Maria R Adv Sci (Weinh). 2024; 11(32):e2405084.

PMID: 38962943 PMC: 11348154. DOI: 10.1002/advs.202405084.


Current Advances in the Use of Tissue Engineering for Cancer Metastasis Therapeutics.

Katti P, Jasuja H Polymers (Basel). 2024; 16(5).

PMID: 38475301 PMC: 10934711. DOI: 10.3390/polym16050617.


Milk fat globule-epidermal growth factor 8 (MFGE8) prevents intestinal fibrosis.

Lin S, Wang J, Mukherjee P, Mao R, West G, Czarnecki D Gut. 2024; 73(7):1110-1123.

PMID: 38378253 PMC: 11248270. DOI: 10.1136/gutjnl-2022-328608.


References
1.
Forcet C, Ye X, Granger L, Corset V, Shin H, Bredesen D . The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proc Natl Acad Sci U S A. 2001; 98(6):3416-21. PMC: 30668. DOI: 10.1073/pnas.051378298. View

2.
Chen H, Sun J, Huang Z, Hou Jr H, Arcilla M, Rakhilin N . Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015; 33(6):656-60. PMC: 4532544. DOI: 10.1038/nbt.3239. View

3.
Trobridge P, Knoblaugh S, Washington M, Munoz N, Tsuchiya K, Rojas A . TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway. Gastroenterology. 2009; 136(5):1680-8.e7. PMC: 2782436. DOI: 10.1053/j.gastro.2009.01.066. View

4.
Yabuta N, Fujii T, Copeland N, Gilbert D, Jenkins N, Nishiguchi H . Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Genomics. 2000; 63(2):263-70. DOI: 10.1006/geno.1999.6065. View

5.
Ridky T, Chow J, Wong D, Khavari P . Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat Med. 2010; 16(12):1450-5. PMC: 3586217. DOI: 10.1038/nm.2265. View