» Articles » PMID: 28717555

Adaptive Nonparametric Kinematic Modeling of Concentric Tube Robots

Overview
Journal Rep U S
Date 2017 Jul 19
PMID 28717555
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Concentric tube robots comprise telescopic precurved elastic tubes. The robot's tip and shape are controlled via relative tube motions, tube rotations and translations. Non-linear interactions between the tubes, friction and torsion, as well as uncertainty in the physical properties of the tubes themselves, the Young's modulus, curvature, or stiffness, hinder accurate kinematic modelling. In this paper, we present a machine-learning-based methodology for kinematic modelling of concentric tube robots and model adaptation. Our approach is based on Locally Weighted Projection Regression (LWPR). The model comprises an ensemble of linear models, each of which locally approximates the original complex kinematic relation. LWPR can accommodate for model deviations by adjusting the respective local models at run-time, resulting in an adaptive kinematics framework. We evaluated our approach on data gathered from a three-tube robot, and report high accuracy across the robot's configuration space.

Citing Articles

Quasi-static Path Planning for Continuum Robots By Sampling on Implicit Manifold.

Wang Y, Chen Y IEEE Int Conf Robot Autom. 2025; 2024:8728-8734.

PMID: 39995850 PMC: 11848831. DOI: 10.1109/icra57147.2024.10611372.


A Data-Driven Model with Hysteresis Compensation for IRIS Robot.

Esfandiari M, Zhou Y, Dehghani S, Hadi M, Munawar A, Phalen H Int Symp Med Robot. 2024; 2024.

PMID: 39421850 PMC: 11486515. DOI: 10.1109/ismr63436.2024.10585958.


Exceeding traditional curvature limits of concentric tube robots through redundancy resolution.

Anderson P, Hendrick R, Rox M, Webster 3rd R Int J Rob Res. 2024; 43(1):53-68.

PMID: 38524963 PMC: 10959507. DOI: 10.1177/02783649231202548.


RRT*-based Path Planning for Continuum Arms.

Meng B, Godage I, Kanj I IEEE Robot Autom Lett. 2022; 7(3):6830-6837.

PMID: 36532612 PMC: 9752401. DOI: 10.1109/lra.2022.3174257.


Learning the Complete Shape of Concentric Tube Robots.

Kuntz A, Sethi A, Webster 3rd R, Alterovitz R IEEE Trans Med Robot Bionics. 2020; 2(2):140-147.

PMID: 32455338 PMC: 7243456. DOI: 10.1109/tmrb.2020.2974523.


References
1.
Schaal , Atkeson . Constructive incremental learning from only local information . Neural Comput. 1998; 10(8):2047-84. DOI: 10.1162/089976698300016963. View

2.
Baykal C, Torres L, Alterovitz R . Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning. Rep U S. 2016; 2015:4381-4387. PMC: 4778735. DOI: 10.1109/IROS.2015.7353999. View

3.
Hendrick R, Mitchell C, Herrell S, Webster 3rd R . Hand-held transendoscopic robotic manipulators: A transurethral laser prostate surgery case study. Int J Rob Res. 2016; 34(13):1559-1572. PMC: 5001675. DOI: 10.1177/0278364915585397. View

4.
Kim C, Ryu S, Dupont P . Real-time Adaptive Kinematic Model Estimation of Concentric Tube Robots. Rep U S. 2016; 2015:3214-3219. PMC: 4860649. DOI: 10.1109/IROS.2015.7353823. View

5.
Burgner J, Rucker D, Gilbert H, Swaney P, Russell 3rd P, Weaver K . A Telerobotic System for Transnasal Surgery. IEEE ASME Trans Mechatron. 2014; 19(3):996-1006. PMC: 4118753. DOI: 10.1109/TMECH.2013.2265804. View