» Articles » PMID: 28709932

Assessing Glycolytic Flux Alterations Resulting from Genetic Perturbations in E. Coli Using a Biosensor

Overview
Journal Metab Eng
Date 2017 Jul 16
PMID 28709932
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

We describe the development of an optimized glycolytic flux biosensor and its application in detecting altered flux in a production strain and in a mutant library. The glycolytic flux biosensor is based on the Cra-regulated ppsA promoter of E. coli controlling fluorescent protein synthesis. We validated the glycolytic flux dependency of the biosensor in a range of different carbon sources in six different E. coli strains and during mevalonate production. Furthermore, we studied the flux-altering effects of genome-wide single gene knock-outs in E. coli in a multiplex FlowSeq experiment. From a library consisting of 2126 knock-out mutants, we identified 3 mutants with high-flux and 95 mutants with low-flux phenotypes that did not have severe growth defects. This approach can improve our understanding of glycolytic flux regulation improving metabolic models and engineering efforts.

Citing Articles

Insights into the regulatory mechanisms and application prospects of the transcription factor Cra.

Huang Y, Jia K, Zhao W, Zhu L Appl Environ Microbiol. 2024; 90(11):e0122824.

PMID: 39494897 PMC: 11577769. DOI: 10.1128/aem.01228-24.


Flow-Seq Method: Features and Application in Bacterial Translation Studies.

Komarova E, Dontsova O, Pyshnyi D, Kabilov M, Sergiev P Acta Naturae. 2023; 14(4):20-37.

PMID: 36694903 PMC: 9844084. DOI: 10.32607/actanaturae.11820.


Metabolome and proteome analyses reveal transcriptional misregulation in glycolysis of engineered E. coli.

Wang C, Lempp M, Farke N, Donati S, Glatter T, Link H Nat Commun. 2021; 12(1):4929.

PMID: 34389727 PMC: 8363753. DOI: 10.1038/s41467-021-25142-0.


Recent trends in biocatalysis.

Yi D, Bayer T, Badenhorst C, Wu S, Doerr M, Hohne M Chem Soc Rev. 2021; 50(14):8003-8049.

PMID: 34142684 PMC: 8288269. DOI: 10.1039/d0cs01575j.


A High-Throughput Method for Identifying Novel Genes That Influence Metabolic Pathways Reveals New Iron and Heme Regulation in Pseudomonas aeruginosa.

Glanville D, Mullineaux-Sanders C, Corcoran C, Burger B, Imam S, Donohue T mSystems. 2021; 6(1).

PMID: 33531406 PMC: 7857532. DOI: 10.1128/mSystems.00933-20.


References
1.
Siedler S, Stahlhut S, Malla S, Maury J, Neves A . Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metab Eng. 2013; 21:2-8. DOI: 10.1016/j.ymben.2013.10.011. View

2.
Monk J, Koza A, Campodonico M, Machado D, Seoane J, Palsson B . Multi-omics Quantification of Species Variation of Escherichia coli Links Molecular Features with Strain Phenotypes. Cell Syst. 2016; 3(3):238-251.e12. PMC: 5058344. DOI: 10.1016/j.cels.2016.08.013. View

3.
Tang S, Qian S, Akinterinwa O, Frei C, Gredell J, Cirino P . Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc. 2013; 135(27):10099-103. DOI: 10.1021/ja402654z. View

4.
Weickert M, Adhya S . Isorepressor of the gal regulon in Escherichia coli. J Mol Biol. 1992; 226(1):69-83. DOI: 10.1016/0022-2836(92)90125-4. View

5.
Skinner A, Cooper R . The regulation of ribose-5-phosphate isomerisation in Escherichia coli K12. FEBS Lett. 1971; 12(5):293-296. DOI: 10.1016/0014-5793(71)80202-8. View