» Articles » PMID: 28698046

Simian Varicella Virus Causes Robust Transcriptional Changes in T Cells That Support Viral Replication

Overview
Journal Virus Res
Specialty Microbiology
Date 2017 Jul 13
PMID 28698046
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Varicella zoster virus (VZV) causes varicella (chickenpox) during acute infection. Several studies have shown that T cells are early and preferential targets of VZV infection that play a critical role in disseminating VZV in to the skin and ganglia. However, the transcriptional changes that occur in VZV-infected T cells remain unclear due to limited access to clinical samples and robust translational animal models. In this study, we used a nonhuman primate model of VZV infection where rhesus macaques are infected with the closely related Simian Varicella Virus (SVV) to provide novel insights into VZV-T cell interactions. RNA sequencing of bronchial alveolar lavage-resident T cells isolated from infected rhesus macaques show that SVV infection alters expression of genes important for regulation of gene expression, cell cycle progression, metabolism, and antiviral immunity. These data provide insight into cellular processes that may support viral replication, facilitate SVV dissemination, and evade host defense.

Citing Articles

Transcriptional and functional remodeling of lung-resident T cells and macrophages by Simian varicella virus infection.

Doratt B, Malherbe D, Messaoudi I Front Immunol. 2024; 15:1408212.

PMID: 38887303 PMC: 11180879. DOI: 10.3389/fimmu.2024.1408212.


Simian Varicella Virus: Molecular Virology and Mechanisms of Pathogenesis.

Jankeel A, Coimbra-Ibraim I, Messaoudi I Curr Top Microbiol Immunol. 2021; 438:163-188.

PMID: 34669041 PMC: 9577235. DOI: 10.1007/82_2021_241.


Insights into the pathogenesis of varicella viruses.

Sorel O, Messaoudi I Curr Clin Microbiol Rep. 2020; 6(3):156-165.

PMID: 32999816 PMC: 7523919. DOI: 10.1007/s40588-019-00119-2.


Current In Vivo Models of Varicella-Zoster Virus Neurotropism.

Mahalingam R, Gershon A, Gershon M, Cohen J, Arvin A, Zerboni L Viruses. 2019; 11(6).

PMID: 31159224 PMC: 6631480. DOI: 10.3390/v11060502.


Varicella Virus-Host Interactions During Latency and Reactivation: Lessons From Simian Varicella Virus.

Sorel O, Messaoudi I Front Microbiol. 2019; 9:3170.

PMID: 30619226 PMC: 6308120. DOI: 10.3389/fmicb.2018.03170.


References
1.
Meysman P, Fedorov D, Van Tendeloo V, Ogunjimi B, Laukens K . Immunological evasion of immediate-early varicella zoster virus proteins. Immunogenetics. 2016; 68(6-7):483-486. DOI: 10.1007/s00251-016-0911-4. View

2.
Schaap A, Fortin J, Sommer M, Zerboni L, Stamatis S, Ku C . T-cell tropism and the role of ORF66 protein in pathogenesis of varicella-zoster virus infection. J Virol. 2005; 79(20):12921-33. PMC: 1235817. DOI: 10.1128/JVI.79.20.12921-12933.2005. View

3.
Arvin A . Varicella-zoster virus: molecular virology and virus-host interactions. Curr Opin Microbiol. 2001; 4(4):442-9. DOI: 10.1016/s1369-5274(00)00233-2. View

4.
Langmead B, Salzberg S . Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357-9. PMC: 3322381. DOI: 10.1038/nmeth.1923. View

5.
Meyer C, Kerns A, Haberthur K, Dewane J, Walker J, Gray W . Attenuation of the adaptive immune response in rhesus macaques infected with simian varicella virus lacking open reading frame 61. J Virol. 2012; 87(4):2151-63. PMC: 3571457. DOI: 10.1128/JVI.02369-12. View