» Articles » PMID: 28685616

Cerebral Serotonin Release Correlates with [C]AZ10419369 PET Measures of 5-HT Receptor Binding in the Pig Brain

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Positron emission tomography (PET) can, when used with appropriate radioligands, non-invasively capture temporal and spatial information about acute changes in brain neurotransmitter systems. We here evaluate the 5-HT receptor partial agonist PET radioligand, [C]AZ10419369, for its sensitivity to detect changes in endogenous cerebral serotonin levels, as induced by different pharmacological challenges. To enable a direct translation of PET imaging data to changes in brain serotonin levels, we compared the [C]AZ10419369 PET signal in the pig brain to simultaneous measurements of extracellular serotonin levels with microdialysis after various acute interventions (saline, escitalopram, fenfluramine). The interventions increased the cerebral extracellular serotonin levels to two to six times baseline, with fenfluramine being the most potent pharmacological enhancer of serotonin release. The interventions induced a varying degree of decline in [C]AZ10419369 binding in the brain, consistent with the occupancy competition model. The observed correlation between changes in the extracellular serotonin level in the pig brain and the 5-HT receptor occupancy indicates that [C]AZ10419369 binding is sensitive to changes in endogenous serotonin levels to a degree equivalent to that reported of [C]raclopride to dopamine, a much used approach to detect in vivo change in cerebral dopamine.

Citing Articles

Hot and Cold Cognitive Disturbances in Parkinson Patients Treated with DBS-STN: A Combined PET and Neuropsychological Study.

Jorgensen L, Henriksen T, Mardosiene S, Wyon O, Keller S, Jespersen B Brain Sci. 2022; 12(5).

PMID: 35625040 PMC: 9139237. DOI: 10.3390/brainsci12050654.


An Pig Model for Testing Novel Positron Emission Tomography Radioligands Targeting Cerebral Protein Aggregates.

Raval N, Nasser A, Aabye Madsen C, Beschorner N, Beaman E, Juhl M Front Neurosci. 2022; 16:847074.

PMID: 35368260 PMC: 8966485. DOI: 10.3389/fnins.2022.847074.


Parkinson patients have a presynaptic serotonergic deficit: A dynamic deep brain stimulation PET study.

Jorgensen L, Henriksen T, Mardosiene S, Keller S, Stenbaek D, Hansen H J Cereb Blood Flow Metab. 2021; 41(8):1954-1963.

PMID: 33461410 PMC: 8327106. DOI: 10.1177/0271678X20982389.


Visual stimuli induce serotonin release in occipital cortex: A simultaneous positron emission tomography/magnetic resonance imaging study.

Hansen H, Lindberg U, Ozenne B, MacDonald Fisher P, Johansen A, Svarer C Hum Brain Mapp. 2020; 41(16):4753-4763.

PMID: 32813903 PMC: 7555083. DOI: 10.1002/hbm.25156.


The Use of Pigs as a Translational Model for Studying Neurodegenerative Diseases.

Hoffe B, Holahan M Front Physiol. 2019; 10:838.

PMID: 31354509 PMC: 6635594. DOI: 10.3389/fphys.2019.00838.


References
1.
Nord M, Finnema S, Halldin C, Farde L . Effect of a single dose of escitalopram on serotonin concentration in the non-human and human primate brain. Int J Neuropsychopharmacol. 2013; 16(7):1577-86. DOI: 10.1017/S1461145712001617. View

2.
Artigas F, Romero L, De Montigny C, Blier P . Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci. 1996; 19(9):378-83. DOI: 10.1016/S0166-2236(96)10037-0. View

3.
Gardier A, David D, Jego G, Przybylski C, Jacquot C, Durier S . Effects of chronic paroxetine treatment on dialysate serotonin in 5-HT1B receptor knockout mice. J Neurochem. 2003; 86(1):13-24. DOI: 10.1046/j.1471-4159.2003.01827.x. View

4.
Beliveau V, Ganz M, Feng L, Ozenne B, Hojgaard L, Fisher P . A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System. J Neurosci. 2017; 37(1):120-128. PMC: 5214625. DOI: 10.1523/JNEUROSCI.2830-16.2016. View

5.
Olson R, Justice Jr J . Quantitative microdialysis under transient conditions. Anal Chem. 1993; 65(8):1017-22. DOI: 10.1021/ac00056a012. View