» Articles » PMID: 28656975

Light Controlled 3D Micromotors Powered by Bacteria

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Jun 29
PMID 28656975
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed.

Citing Articles

The 2025 motile active matter roadmap.

Gompper G, Stone H, Kurzthaler C, Saintillan D, Peruani F, Fedosov D J Phys Condens Matter. 2025; 37(14).

PMID: 39837091 PMC: 11836640. DOI: 10.1088/1361-648X/adac98.


Light-driven synchronization of optogenetic clocks.

Cannarsa M, Liguori F, Pellicciotta N, Frangipane G, di Leonardo R Elife. 2024; 13.

PMID: 39405096 PMC: 11479589. DOI: 10.7554/eLife.97754.


Dynamic Gene Expression Mitigates Mutational Escape in Lysis-Driven Bacteria Cancer Therapy.

Liguori F, Pellicciotta N, Milanetti E, Xi Windemuth S, Ruocco G, di Leonardo R Biodes Res. 2024; 6:0049.

PMID: 39301524 PMC: 11411163. DOI: 10.34133/bdr.0049.


Rolling Helical Microrobots for Cell Patterning.

Yang Y, Kirmizitas F, Sokolich M, Valencia A, Rivas D, Karakan M Int Conf Manip Autom Robot Small Scales. 2024; 2023.

PMID: 38952455 PMC: 11215787. DOI: 10.1109/marss58567.2023.10294113.


Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids.

Lemma L, Varghese M, Ross T, Thomson M, Baskaran A, Dogic Z PNAS Nexus. 2023; 2(5):pgad130.

PMID: 37168671 PMC: 10165807. DOI: 10.1093/pnasnexus/pgad130.


References
1.
Adler J, Templeton B . The effect of environmental conditions on the motility of Escherichia coli. J Gen Microbiol. 1967; 46(2):175-84. DOI: 10.1099/00221287-46-2-175. View

2.
Frymier P, Ford R, Berg H, Cummings P . Three-dimensional tracking of motile bacteria near a solid planar surface. Proc Natl Acad Sci U S A. 1995; 92(13):6195-9. PMC: 41669. DOI: 10.1073/pnas.92.13.6195. View

3.
Schwarz-Linek J, Arlt J, Jepson A, Dawson A, Vissers T, Miroli D . Escherichia coli as a model active colloid: A practical introduction. Colloids Surf B Biointerfaces. 2015; 137:2-16. DOI: 10.1016/j.colsurfb.2015.07.048. View

4.
Bianchi S, Saglimbeni F, Lepore A, Di Leonardo R . Polar features in the flagellar propulsion of E. coli bacteria. Phys Rev E Stat Nonlin Soft Matter Phys. 2015; 91(6):062705. DOI: 10.1103/PhysRevE.91.062705. View

5.
Maruo S, Nakamura O, Kawata S . Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett. 1997; 22(2):132-4. DOI: 10.1364/ol.22.000132. View