» Articles » PMID: 28652344

X-ray Crystal Structure of a Reiterative Transcription Complex Reveals an Atypical RNA Extension Pathway

Overview
Specialty Science
Date 2017 Jun 28
PMID 28652344
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Reiterative transcription is a noncanonical form of RNA synthesis in which a nucleotide specified by a single base in the DNA template is repetitively added to the nascent transcript. Here we determined the crystal structure of an RNA polymerase, the bacterial enzyme from , engaged in reiterative transcription during transcription initiation at a promoter resembling the promoter of The structure reveals that the reiterative transcript detours from the dedicated RNA exit channel and extends toward the main channel of the enzyme, thereby allowing RNA extension without displacement of the promoter recognition σ-factor. Nascent transcripts containing reiteratively added G residues are eventually extended by nonreiterative transcription, revealing an atypical pathway for the formation of a transcription elongation complex.

Citing Articles

Structural and mechanistic basis of reiterative transcription initiation.

Liu Y, Yu L, Pukhrambam C, Winkelman J, Firlar E, Kaelber J Proc Natl Acad Sci U S A. 2022; 119(5).

PMID: 35082149 PMC: 8812562. DOI: 10.1073/pnas.2115746119.


Watching the bacterial RNA polymerase transcription reaction by time-dependent soak-trigger-freeze X-ray crystallography.

Shin Y, Murakami K Enzymes. 2021; 49:305-314.

PMID: 34696836 PMC: 8965730. DOI: 10.1016/bs.enz.2021.06.009.


The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases.

Makinen J, Shin Y, Vieras E, Virta P, Metsa-Ketela M, Murakami K Nat Commun. 2021; 12(1):796.

PMID: 33542236 PMC: 7862312. DOI: 10.1038/s41467-021-21005-w.


Nucleotide Loading Modes of Human RNA Polymerase II as Deciphered by Molecular Simulations.

Genin N, Weinzierl R Biomolecules. 2020; 10(9).

PMID: 32906795 PMC: 7565877. DOI: 10.3390/biom10091289.


Structural basis of reiterative transcription from the pyrG and pyrBI promoters by bacterial RNA polymerase.

Shin Y, Hedglin M, Murakami K Nucleic Acids Res. 2020; 48(4):2144-2155.

PMID: 31965171 PMC: 7039003. DOI: 10.1093/nar/gkz1221.


References
1.
Korzheva N, Mustaev A, Kozlov M, Malhotra A, Nikiforov V, Goldfarb A . A structural model of transcription elongation. Science. 2000; 289(5479):619-25. DOI: 10.1126/science.289.5479.619. View

2.
Zhang G, Campbell E, Minakhin L, Richter C, Severinov K, Darst S . Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell. 1999; 98(6):811-24. DOI: 10.1016/s0092-8674(00)81515-9. View

3.
Molodtsov V, Scharf N, Stefan M, Garcia G, Murakami K . Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis. Mol Microbiol. 2016; 103(6):1034-1045. PMC: 5344776. DOI: 10.1111/mmi.13606. View

4.
Molodtsov V, Anikin M, McAllister W . The presence of an RNA:DNA hybrid that is prone to slippage promotes termination by T7 RNA polymerase. J Mol Biol. 2014; 426(18):3095-3107. PMC: 4172313. DOI: 10.1016/j.jmb.2014.06.012. View

5.
Jacques J, Kolakofsky D . Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev. 1991; 5(5):707-13. DOI: 10.1101/gad.5.5.707. View