» Articles » PMID: 28648497

Selective Optogenetic Control of Purkinje Cells in Monkey Cerebellum

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2017 Jun 27
PMID 28648497
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Purkinje cells of the primate cerebellum play critical but poorly understood roles in the execution of coordinated, accurate movements. Elucidating these roles has been hampered by a lack of techniques for manipulating spiking activity in these cells selectively-a problem common to most cell types in non-transgenic animals. To overcome this obstacle, we constructed AAV vectors carrying the channelrhodopsin-2 (ChR2) gene under the control of a 1 kb L7/Pcp2 promoter. We injected these vectors into the cerebellar cortex of rhesus macaques and tested vector efficacy in three ways. Immunohistochemical analyses confirmed selective ChR2 expression in Purkinje cells. Neurophysiological recordings confirmed robust optogenetic activation. Optical stimulation of the oculomotor vermis caused saccade dysmetria. Our results demonstrate the utility of AAV-L7-ChR2 for revealing the contributions of Purkinje cells to circuit function and behavior, and they attest to the feasibility of promoter-based, targeted, genetic manipulations in primates.

Citing Articles

Capacitive Eye Tracker Made of Fractured Carbon Nanotube-Paper Composites for Wearable Applications.

Sakthivelpathi V, Qian Z, Li T, Ahn S, Dichiara A, Soetedjo R Sens Actuators A Phys. 2025; 344.

PMID: 40012761 PMC: 11864793. DOI: 10.1016/j.sna.2022.113739.


Comparative analysis of six adeno-associated viral vector serotypes in mouse inferior colliculus and cerebellum.

Witteveen I, Balmer T bioRxiv. 2024; .

PMID: 39484622 PMC: 11526941. DOI: 10.1101/2024.10.17.618966.


Comparative Analysis of Six Adeno-Associated Viral Vector Serotypes in Mouse Inferior Colliculus and Cerebellum.

Witteveen I, Balmer T eNeuro. 2024; 11(11).

PMID: 39467650 PMC: 11576142. DOI: 10.1523/ENEURO.0391-24.2024.


Primate eye tracking with carbon-nanotube-paper-composite based capacitive sensors and machine learning algorithms.

Li T, Sakthivelpathi V, Qian Z, Soetedjo R, Chung J J Neurosci Methods. 2024; 410:110249.

PMID: 39151657 PMC: 11364525. DOI: 10.1016/j.jneumeth.2024.110249.


Intrinsic and synaptic determinants of receptive field plasticity in Purkinje cells of the mouse cerebellum.

Lin T, Busch S, Hansel C Nat Commun. 2024; 15(1):4645.

PMID: 38821918 PMC: 11143328. DOI: 10.1038/s41467-024-48373-3.


References
1.
Person A, Raman I . Synchrony and neural coding in cerebellar circuits. Front Neural Circuits. 2012; 6:97. PMC: 3518933. DOI: 10.3389/fncir.2012.00097. View

2.
Diester I, Kaufman M, Mogri M, Pashaie R, Goo W, Yizhar O . An optogenetic toolbox designed for primates. Nat Neurosci. 2011; 14(3):387-97. PMC: 3150193. DOI: 10.1038/nn.2749. View

3.
Baumann O, Borra R, Bower J, Cullen K, Habas C, Ivry R . Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2014; 14(2):197-220. PMC: 4346664. DOI: 10.1007/s12311-014-0627-7. View

4.
Witter L, Canto C, Hoogland T, De Gruijl J, De Zeeuw C . Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circuits. 2013; 7:133. PMC: 3748751. DOI: 10.3389/fncir.2013.00133. View

5.
Zorzos A, Scholvin J, Boyden E, Fonstad C . Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt Lett. 2012; 37(23):4841-3. PMC: 3572236. DOI: 10.1364/OL.37.004841. View