16GT: a Fast and Sensitive Variant Caller Using a 16-genotype Probabilistic Model
Overview
Affiliations
16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It uses a new 16-genotype probabilistic model to unify single nucleotide polymorphism and insertion and deletion calling in a single variant calling algorithm. In benchmark comparisons with 5 other widely used variant callers on a modern 36-core server, 16GT demonstrated improved sensitivity in calling single nucleotide polymorphisms, and it provided comparable sensitivity and accuracy for calling insertions and deletions as compared to the GATK HaplotypeCaller. 16GT is available at https://github.com/aquaskyline/16GT.
Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens.
Liu J, Shen Q, Bao H PLoS One. 2022; 17(1):e0262574.
PMID: 35100292 PMC: 8803190. DOI: 10.1371/journal.pone.0262574.
Bush S, Foster D, Eyre D, Clark E, De Maio N, Shaw L Gigascience. 2020; 9(2).
PMID: 32025702 PMC: 7002876. DOI: 10.1093/gigascience/giaa007.
Joint Estimates of Heterozygosity and Runs of Homozygosity for Modern and Ancient Samples.
Renaud G, Hanghoj K, Korneliussen T, Willerslev E, Orlando L Genetics. 2019; 212(3):587-614.
PMID: 31088861 PMC: 6614887. DOI: 10.1534/genetics.119.302057.
A multi-task convolutional deep neural network for variant calling in single molecule sequencing.
Luo R, Sedlazeck F, Lam T, Schatz M Nat Commun. 2019; 10(1):998.
PMID: 30824707 PMC: 6397153. DOI: 10.1038/s41467-019-09025-z.
A universal SNP and small-indel variant caller using deep neural networks.
Poplin R, Chang P, Alexander D, Schwartz S, Colthurst T, Ku A Nat Biotechnol. 2018; 36(10):983-987.
PMID: 30247488 DOI: 10.1038/nbt.4235.