» Articles » PMID: 28630141

Temperature-responsive MiRNAs in Orchestrate Adaptation to Different Ambient Temperatures

Overview
Journal RNA
Specialty Molecular Biology
Date 2017 Jun 21
PMID 28630141
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The majority of genes are expressed in a temperature-dependent manner, but the way in which small RNAs may contribute to this effect is completely unknown as we currently lack an idea of how small RNA transcriptomes change as a function of temperature. Applying high-throughput sequencing techniques complemented by quantitative real-time PCR experiments, we demonstrate that altered ambient temperature induces drastic but reversible changes in sequence composition and total abundance of both miRNA and piRNA populations. Further, mRNA sequencing reveals that the expression of miRNAs and their predicted target transcripts correlates inversely, suggesting that temperature-responsive miRNAs drive adaptation to different ambient temperatures on the transcriptome level. Finally, we demonstrate that shifts in temperature affect both primary and secondary piRNA pools, and the observed aberrations are consistent with altered expression levels of the involved Piwi-pathway factors. We further reason that enhanced ping-pong processing at 29°C is driven by dissolved RNA secondary structures at higher temperatures, uncovering target sites that are not accessible at low temperatures. Together, our results show that small RNAs are an important part of epigenetic regulatory mechanisms that ensure homeostasis and adaptation under fluctuating environmental conditions.

Citing Articles

Diversification and recurrent adaptation of the synaptonemal complex in Drosophila.

Zakerzade R, Chang C, Chatla K, Krishnapura A, Appiah S, Zhang J PLoS Genet. 2025; 21(1):e1011549.

PMID: 39804957 PMC: 11761671. DOI: 10.1371/journal.pgen.1011549.


Beyond the heat shock pathway: Heat stress responses in Drosophila development.

Gibbs J, Mei C, Wunderlich Z Dev Biol. 2024; 518():53-60.

PMID: 39557149 PMC: 11703687. DOI: 10.1016/j.ydbio.2024.11.003.


The composition of piRNA clusters in Drosophila melanogaster deviates from expectations under the trap model.

Wierzbicki F, Kofler R BMC Biol. 2023; 21(1):224.

PMID: 37858221 PMC: 10588112. DOI: 10.1186/s12915-023-01727-7.


Impact of Heat Stress on Transposable Element Expression and Derived Small RNAs in Drosophila subobscura.

Bodelon A, Fablet M, Siqueira de Oliveira D, Vieira C, Garcia Guerreiro M Genome Biol Evol. 2023; 15(11).

PMID: 37847062 PMC: 10627563. DOI: 10.1093/gbe/evad189.


Are miRNAs Dynamic Biomarkers in Keratoconus? A Review of the Literature.

Stunf Pukl S Genes (Basel). 2022; 13(4).

PMID: 35456395 PMC: 9025197. DOI: 10.3390/genes13040588.


References
1.
Voolstra C, Schnetzer J, Peshkin L, Randall C, Szmant A, Medina M . Effects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC Genomics. 2009; 10:627. PMC: 2807443. DOI: 10.1186/1471-2164-10-627. View

2.
Potla R, Singh I, Atamas S, Hasday J . Shifts in temperature within the physiologic range modify strand-specific expression of select human microRNAs. RNA. 2015; 21(7):1261-73. PMC: 4478345. DOI: 10.1261/rna.049122.114. View

3.
Garcia Guerreiro M . What makes transposable elements move in the Drosophila genome?. Heredity (Edinb). 2011; 108(5):461-8. PMC: 3330689. DOI: 10.1038/hdy.2011.89. View

4.
Athenstaedt K, Daum G . The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci. 2006; 63(12):1355-69. PMC: 11136409. DOI: 10.1007/s00018-006-6016-8. View

5.
Brennecke J, Aravin A, Stark A, Dus M, Kellis M, Sachidanandam R . Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007; 128(6):1089-103. DOI: 10.1016/j.cell.2007.01.043. View