» Articles » PMID: 28621666

9Å Structure of the COPI Coat Reveals That the Arf1 GTPase Occupies Two Contrasting Molecular Environments

Overview
Journal Elife
Specialty Biology
Date 2017 Jun 17
PMID 28621666
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of βδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly.

Citing Articles

Arf GTPase-Activating proteins ADAP1 and ARAP1 regulate incorporation of CD63 in multivesicular bodies.

Suzuki K, Okawa Y, Akter S, Ito H, Shiba Y Biol Open. 2024; 13(5).

PMID: 38682696 PMC: 11103404. DOI: 10.1242/bio.060338.


Structural elucidation of how ARF small GTPases induce membrane tubulation for vesicle fission.

Pang X, Zhang Y, Park K, Liao Z, Li J, Xu J bioRxiv. 2024; .

PMID: 38187566 PMC: 10769218. DOI: 10.1101/2023.12.19.572083.


A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs.

Dey D, Qing E, He Y, Chen Y, Jennings B, Cohn W Nat Commun. 2023; 14(1):8358.

PMID: 38102143 PMC: 10724246. DOI: 10.1038/s41467-023-44076-3.


Attachment, Entry, and Intracellular Trafficking of Classical Swine Fever Virus.

Guo X, Zhang M, Liu X, Zhang Y, Wang C, Guo Y Viruses. 2023; 15(9).

PMID: 37766277 PMC: 10534341. DOI: 10.3390/v15091870.


The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix.

Manzer K, Fromme J Mol Biol Cell. 2023; 34(12):ar119.

PMID: 37672345 PMC: 10846627. DOI: 10.1091/mbc.E23-07-0283.


References
1.
Luo R, Ha V, Hayashi R, Randazzo P . Arf GAP2 is positively regulated by coatomer and cargo. Cell Signal. 2009; 21(7):1169-79. PMC: 2692659. DOI: 10.1016/j.cellsig.2009.03.006. View

2.
Rohou A, Grigorieff N . CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol. 2015; 192(2):216-21. PMC: 6760662. DOI: 10.1016/j.jsb.2015.08.008. View

3.
Yu X, Breitman M, Goldberg J . A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes. Cell. 2012; 148(3):530-42. PMC: 3285272. DOI: 10.1016/j.cell.2012.01.015. View

4.
Forster F, Medalia O, Zauberman N, Baumeister W, Fass D . Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc Natl Acad Sci U S A. 2005; 102(13):4729-34. PMC: 555690. DOI: 10.1073/pnas.0409178102. View

5.
Hoffman G, Rahl P, Collins R, Cerione R . Conserved structural motifs in intracellular trafficking pathways: structure of the gammaCOP appendage domain. Mol Cell. 2003; 12(3):615-25. DOI: 10.1016/j.molcel.2003.08.002. View