» Articles » PMID: 22304919

A Structure-based Mechanism for Arf1-dependent Recruitment of Coatomer to Membranes

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2012 Feb 7
PMID 22304919
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

Budding of COPI-coated vesicles from Golgi membranes requires an Arf family G protein and the coatomer complex recruited from cytosol. Arf is also required with coatomer-related clathrin adaptor complexes to bud vesicles from the trans-Golgi network and endosomal compartments. To understand the structural basis for Arf-dependent recruitment of a vesicular coat to the membrane, we determined the structure of Arf1 bound to the γζ-COP subcomplex of coatomer. Structure-guided biochemical analysis reveals that a second Arf1-GTP molecule binds to βδ-COP at a site common to the γ- and β-COP subunits. The Arf1-binding sites on coatomer are spatially related to PtdIns4,5P(2)-binding sites on the endocytic AP2 complex, providing evidence that the orientation of membrane binding is general for this class of vesicular coat proteins. A bivalent GTP-dependent binding mode has implications for the dynamics of coatomer interaction with the Golgi and for the selection of cargo molecules.

Citing Articles

A structure-based mechanism for initiation of AP-3 coated vesicle formation.

Begley M, Aragon M, Baker R Proc Natl Acad Sci U S A. 2024; 121(52):e2411974121.

PMID: 39705307 PMC: 11670113. DOI: 10.1073/pnas.2411974121.


BEACH domain proteins function as cargo-sorting adaptors in secretory and endocytic pathways.

Pankiv S, Dahl A, Aas A, Andersen R, Brech A, Holland P J Cell Biol. 2024; 223(12).

PMID: 39514288 PMC: 11554844. DOI: 10.1083/jcb.202408173.


Extracellular vesicle formation in is driven by a small GTPase.

Mills J, Gebhard L, Schubotz F, Shevchenko A, Speth D, Liao Y Proc Natl Acad Sci U S A. 2024; 121(10):e2311321121.

PMID: 38408251 PMC: 10927574. DOI: 10.1073/pnas.2311321121.


Structural elucidation of how ARF small GTPases induce membrane tubulation for vesicle fission.

Pang X, Zhang Y, Park K, Liao Z, Li J, Xu J bioRxiv. 2024; .

PMID: 38187566 PMC: 10769218. DOI: 10.1101/2023.12.19.572083.


COPI coatomer subunit α-COP interacts with the RNA binding protein Nucleolin via a C-terminal dilysine motif.

Custer S, Gilson T, Astroski J, Nanguneri S, Iurillo A, Androphy E Hum Mol Genet. 2023; 32(23):3263-3275.

PMID: 37658769 PMC: 10656708. DOI: 10.1093/hmg/ddad140.


References
1.
Goldberg J . Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell. 1999; 96(6):893-902. DOI: 10.1016/s0092-8674(00)80598-x. View

2.
Vetter I, Wittinghofer A . The guanine nucleotide-binding switch in three dimensions. Science. 2001; 294(5545):1299-304. DOI: 10.1126/science.1062023. View

3.
Peyroche A, Paris S, Jackson C . Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature. 1996; 384(6608):479-81. DOI: 10.1038/384479a0. View

4.
Goldberg J . Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell. 1998; 95(2):237-48. DOI: 10.1016/s0092-8674(00)81754-7. View

5.
Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N . COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell. 1994; 77(6):895-907. DOI: 10.1016/0092-8674(94)90138-4. View