» Articles » PMID: 28620867

Gut Microbiome and Bone: to Build, Destroy, or Both?

Overview
Publisher Current Science
Date 2017 Jun 17
PMID 28620867
Citations 58
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose Of Review: The gut microbiota can be considered a hidden organ that plays essential roles in host homeostasis. Exploration of the effects of microbiota on bone has just begun. Complimentary studies using germ-free mice, antibiotic, and probiotic treatments reveal a complicated relationship between microbiota and bone. Here, we review recent reports addressing the effect of gut microbiota on bone health, discuss potential reasons for discrepant findings, and explore potential mechanisms for these effects.

Recent Findings: Manipulation of microbiota by colonization of germ-free mice, antibiotics, or probiotic supplementation significantly alters bone remodeling, bone development and growth, as well as bone mechanical strength. Different experimental models reveal context-dependent effects of gut microbiota on bone. By examining phenotypic effects, experimental context, and proposed mechanisms, revealed by recent reports, we hope to provide comprehensive and fresh insights into the many facets of microbiota and bone interactions.

Citing Articles

Total flavonoids isolated from can alleviate bone loss and regulate intestinal microbiota in ovariectomized rats.

Yin B, Yang M, Wang B, Zhang Y, Li N, Li Q Front Pharmacol. 2025; 16:1513863.

PMID: 39989899 PMC: 11842935. DOI: 10.3389/fphar.2025.1513863.


Microbiome's role in musculoskeletal health through the gut-bone axis insights.

Li Z, Wang Q, Huang X, Wu Y, Shan D Gut Microbes. 2024; 16(1):2410478.

PMID: 39387683 PMC: 11469435. DOI: 10.1080/19490976.2024.2410478.


Microbiome-induced increases and decreases in bone matrix strength can be initiated after skeletal maturity.

Liu C, Cyphert E, Stephen S, Wang B, Morales A, Nixon J J Bone Miner Res. 2024; 39(11):1621-1632.

PMID: 39348436 PMC: 11523134. DOI: 10.1093/jbmr/zjae157.


Gut microbiota, inflammatory factors, and scoliosis: A Mendelian randomization study.

Zhao X, Liu J, Zhang L, Ma C, Liu Y, Wen H Medicine (Baltimore). 2024; 103(24):e38561.

PMID: 38875409 PMC: 11175948. DOI: 10.1097/MD.0000000000038561.


Bone-organ axes: bidirectional crosstalk.

Deng A, Wang F, Wang S, Zhang Y, Bai L, Su J Mil Med Res. 2024; 11(1):37.

PMID: 38867330 PMC: 11167910. DOI: 10.1186/s40779-024-00540-9.


References
1.
Furusawa Y, Obata Y, Fukuda S, Endo T, Nakato G, Takahashi D . Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504(7480):446-50. DOI: 10.1038/nature12721. View

2.
Cui Y, Niziolek P, MacDonald B, Zylstra C, Alenina N, Robinson D . Lrp5 functions in bone to regulate bone mass. Nat Med. 2011; 17(6):684-91. PMC: 3113461. DOI: 10.1038/nm.2388. View

3.
Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F . From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016; 165(6):1332-1345. DOI: 10.1016/j.cell.2016.05.041. View

4.
Li J, Chassaing B, Tyagi A, Vaccaro C, Luo T, Adams J . Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016; 126(6):2049-63. PMC: 4887186. DOI: 10.1172/JCI86062. View

5.
Rausch P, Basic M, Batra A, Bischoff S, Blaut M, Clavel T . Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int J Med Microbiol. 2016; 306(5):343-355. DOI: 10.1016/j.ijmm.2016.03.004. View