» Articles » PMID: 28618232

Toward Fast and Accurate Binding Affinity Prediction with PmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration

Overview
Specialties Biochemistry
Chemistry
Date 2017 Jun 16
PMID 28618232
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

We report the implementation of the thermodynamic integration method on the pmemd module of the AMBER 16 package on GPUs (pmemdGTI). The pmemdGTI code typically delivers over 2 orders of magnitude of speed-up relative to a single CPU core for the calculation of ligand-protein binding affinities with no statistically significant numerical differences and thus provides a powerful new tool for drug discovery applications.

Citing Articles

Impact of Varying Velocities and Solvation Boxes on Alchemical Free-Energy Simulations.

Wang M, Jiang H, Ryde U J Chem Inf Model. 2025; 65(4):2107-2115.

PMID: 39887323 PMC: 11863368. DOI: 10.1021/acs.jcim.4c02236.


Transformation of peptides to small molecules in medicinal chemistry: Challenges and opportunities.

Han Z, Shen Z, Pei J, You Q, Zhang Q, Wang L Acta Pharm Sin B. 2024; 14(10):4243-4265.

PMID: 39525591 PMC: 11544290. DOI: 10.1016/j.apsb.2024.06.019.


BAT2: an Open-Source Tool for Flexible, Automated, and Low Cost Absolute Binding Free Energy Calculations.

Heinzelmann G, Huggins D, Gilson M J Chem Theory Comput. 2024; 20(15):6518-6530.

PMID: 39088306 PMC: 11325538. DOI: 10.1021/acs.jctc.4c00205.


Targeting the conserved active site of splicing machines with specific and selective small molecule modulators.

Silvestri I, Manigrasso J, Andreani A, Brindani N, Mas C, Reiser J Nat Commun. 2024; 15(1):4980.

PMID: 38898052 PMC: 11187226. DOI: 10.1038/s41467-024-48697-0.


Development and test of highly accurate endpoint free energy methods. 3: partition coefficient prediction using a Poisson-Boltzmann method combined with a solvent accessible surface area model for SAMPL challenges.

Niu T, He X, Han F, Wang L, Wang J Phys Chem Chem Phys. 2023; 26(1):85-94.

PMID: 38053433 PMC: 10754273. DOI: 10.1039/d3cp04174c.


References
1.
Ytreberg F, Swendsen R, Zuckerman D . Comparison of free energy methods for molecular systems. J Chem Phys. 2006; 125(18):184114. DOI: 10.1063/1.2378907. View

2.
Miranda W, Noskov S, Valiente P . Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes. J Chem Inf Model. 2015; 55(9):1867-77. DOI: 10.1021/acs.jcim.5b00012. View

3.
Cuendet M, Tuckerman M . Alchemical Free Energy Differences in Flexible Molecules from Thermodynamic Integration or Free Energy Perturbation Combined with Driven Adiabatic Dynamics. J Chem Theory Comput. 2015; 8(10):3504-12. DOI: 10.1021/ct300090z. View

4.
Meng Y, Sabri Dashti D, Roitberg A . Computing Alchemical Free Energy Differences with Hamiltonian Replica Exchange Molecular Dynamics (H-REMD) Simulations. J Chem Theory Comput. 2011; 7(9):2721-2727. PMC: 3223983. DOI: 10.1021/ct200153u. View

5.
Mobley D, Klimovich P . Perspective: Alchemical free energy calculations for drug discovery. J Chem Phys. 2012; 137(23):230901. PMC: 3537745. DOI: 10.1063/1.4769292. View