» Articles » PMID: 28591637

Amino Acid Transporter Slc38a5 Controls Glucagon Receptor Inhibition-Induced Pancreatic α Cell Hyperplasia in Mice

Abstract

Glucagon supports glucose homeostasis by stimulating hepatic gluconeogenesis, in part by promoting the uptake and conversion of amino acids into gluconeogenic precursors. Genetic disruption or pharmacologic inhibition of glucagon signaling results in elevated plasma amino acids and compensatory glucagon hypersecretion involving expansion of pancreatic α cell mass. Recent findings indicate that hyperaminoacidemia triggers pancreatic α cell proliferation via an mTOR-dependent pathway. We confirm and extend these findings by demonstrating that glucagon pathway blockade selectively increases expression of the sodium-coupled neutral amino acid transporter Slc38a5 in a subset of highly proliferative α cells and that Slc38a5 controls the pancreatic response to glucagon pathway blockade; most notably, mice deficient in Slc38a5 exhibit markedly decreased α cell hyperplasia to glucagon pathway blockade-induced hyperaminoacidemia. These results show that Slc38a5 is a key component of the feedback circuit between glucagon receptor signaling in the liver and amino-acid-dependent regulation of pancreatic α cell mass in mice.

Citing Articles

Blockade of glucagon receptor induces α-cell hypersecretion by hyperaminoacidemia in mice.

Jia J, Bai X, Kang Q, Jiang F, Wong F, Jin Q Nat Commun. 2025; 16(1):2473.

PMID: 40075066 PMC: 11903786. DOI: 10.1038/s41467-025-57786-7.


Autophagy-lysosome pathway in insulin & glucagon homeostasis.

Wu Y, Wang H, Xu H Front Endocrinol (Lausanne). 2025; 16:1541794.

PMID: 39996055 PMC: 11847700. DOI: 10.3389/fendo.2025.1541794.


NKX2.2 and KLF4 cooperate to regulate α-cell identity.

Brooks E, Casey M, Wells K, Liu T, Van Orman M, Sussel L Genes Dev. 2025; 39(3-4):242-260.

PMID: 39797760 PMC: 11789634. DOI: 10.1101/gad.352193.124.


Hyperaminoacidemia from interrupted glucagon signaling increases pancreatic acinar cell proliferation and size via mTORC1 and YAP pathways.

Dai C, Zhang Y, Gong Y, Bradley A, Tang Z, Sellick K iScience. 2024; 27(12):111447.

PMID: 39720531 PMC: 11667045. DOI: 10.1016/j.isci.2024.111447.


Phosphoproteomics-directed manipulation reveals SEC22B as a hepatocellular signaling node governing metabolic actions of glucagon.

Wu Y, Foollee A, Chan A, Hille S, Hauke J, Challis M Nat Commun. 2024; 15(1):8390.

PMID: 39333498 PMC: 11436942. DOI: 10.1038/s41467-024-52703-w.


References
1.
Hayashi Y, Yamamoto M, Mizoguchi H, Watanabe C, Ito R, Yamamoto S . Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet {alpha}-cells but not of intestinal L-cells. Mol Endocrinol. 2009; 23(12):1990-9. PMC: 5419124. DOI: 10.1210/me.2009-0296. View

2.
Bokvist K, Olsen H, Hoy M, Gotfredsen C, Holmes W, Buschard K . Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch. 1999; 438(4):428-36. DOI: 10.1007/s004249900076. View

3.
Wargent E . The measurement of insulin secretion using pancreas perfusion in the rodent. Methods Mol Biol. 2009; 560:203-19. DOI: 10.1007/978-1-59745-448-3_14. View

4.
Boden G, MASTER R, Rezvani I, Palmer J, Lobe T, Owen O . Glucagon deficiency and hyperaminoacidemia after total pancreatectomy. J Clin Invest. 1980; 65(3):706-16. PMC: 371413. DOI: 10.1172/JCI109717. View

5.
Li D, Chen S, Bellomo E, Tarasov A, Kaut C, Rutter G . Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR). Proc Natl Acad Sci U S A. 2011; 108(52):21063-8. PMC: 3248484. DOI: 10.1073/pnas.1109773109. View