» Articles » PMID: 28586644

Endothelial-to-Osteoblast Conversion Generates Osteoblastic Metastasis of Prostate Cancer

Abstract

Prostate cancer (PCa) bone metastasis is frequently associated with bone-forming lesions, but the source of the osteoblastic lesions remains unclear. We show that the tumor-induced bone derives partly from tumor-associated endothelial cells that have undergone endothelial-to-osteoblast (EC-to-OSB) conversion. The tumor-associated osteoblasts in PCa bone metastasis specimens and patient-derived xenografts (PDXs) were found to co-express endothelial marker Tie-2. BMP4, identified in PDX-conditioned medium, promoted EC-to-OSB conversion of 2H11 endothelial cells. BMP4 overexpression in non-osteogenic C4-2b PCa cells led to ectopic bone formation under subcutaneous implantation. Tumor-induced bone was reduced in trigenic mice (Tie2/Osx/SCID) with endothelial-specific deletion of osteoblast cell-fate determinant OSX compared with bigenic mice (Osx/SCID). Thus, tumor-induced EC-to-OSB conversion is one mechanism that leads to osteoblastic bone metastasis of PCa.

Citing Articles

Prostate cancer-induced endothelial-cell-to-osteoblast transition drives immunosuppression in the bone-tumor microenvironment through Wnt pathway-induced M2 macrophage polarization.

Yu G, Corn P, Mak C, Liang X, Zhang M, Troncoso P Proc Natl Acad Sci U S A. 2024; 121(33):e2402903121.

PMID: 39102549 PMC: 11331113. DOI: 10.1073/pnas.2402903121.


Radium-223 Treatment Produces Prolonged Suppression of Resident Osteoblasts and Decreased Bone Mineral Density in Trabecular Bone in Osteoblast Reporter Mice.

Lin S, Yu G, Corn P, Damasco J, Lee Y, Song J Cancers (Basel). 2024; 16(14).

PMID: 39061241 PMC: 11274981. DOI: 10.3390/cancers16142603.


Deciphering the impact of aging on splenic endothelial cell heterogeneity and immunosenescence through single-cell RNA sequencing analysis.

Huang Y, Liu Z, Li M, Wang D, Ye J, Hu Q Immun Ageing. 2024; 21(1):48.

PMID: 39026350 PMC: 11256597. DOI: 10.1186/s12979-024-00452-1.


Prognostic analysis of percutaneous vertebroplasty (PVP) combined with I implantation on lumbosacral vertebral osteoblastic metastases.

Xu L, Huang X, Lou Y, Xie W, He J, Yang Z World J Surg Oncol. 2023; 21(1):391.

PMID: 38124135 PMC: 10731753. DOI: 10.1186/s12957-023-03268-3.


Crosstalk between Endothelial Cells and Tumor Cells: A New Era in Prostate Cancer Progression.

Ji S, Wu W, Jiang Q Int J Mol Sci. 2023; 24(23).

PMID: 38069225 PMC: 10707594. DOI: 10.3390/ijms242316893.


References
1.
Lee Y, Cheng C, Bilen M, Lu J, Satcher R, Yu-Lee L . BMP4 promotes prostate tumor growth in bone through osteogenesis. Cancer Res. 2011; 71(15):5194-203. PMC: 3148283. DOI: 10.1158/0008-5472.CAN-10-4374. View

2.
Coleman R . Skeletal complications of malignancy. Cancer. 1997; 80(8 Suppl):1588-94. DOI: 10.1002/(sici)1097-0142(19971015)80:8+<1588::aid-cncr9>3.3.co;2-z. View

3.
Lee Y, Srajer Gajdosik M, Josic D, Clifton J, Logothetis C, Yu-Lee L . Secretome analysis of an osteogenic prostate tumor identifies complex signaling networks mediating cross-talk of cancer and stromal cells within the tumor microenvironment. Mol Cell Proteomics. 2014; 14(3):471-83. PMC: 4349970. DOI: 10.1074/mcp.M114.039909. View

4.
Hojo H, Ohba S, He X, Lai L, McMahon A . Sp7/Osterix Is Restricted to Bone-Forming Vertebrates where It Acts as a Dlx Co-factor in Osteoblast Specification. Dev Cell. 2016; 37(3):238-53. PMC: 4964983. DOI: 10.1016/j.devcel.2016.04.002. View

5.
Eghbali-Fatourechi G, Lamsam J, Fraser D, Nagel D, Riggs B, Khosla S . Circulating osteoblast-lineage cells in humans. N Engl J Med. 2005; 352(19):1959-66. DOI: 10.1056/NEJMoa044264. View