» Articles » PMID: 28561066

WIPI3 and WIPI4 β-propellers Are Scaffolds for LKB1-AMPK-TSC Signalling Circuits in the Control of Autophagy

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Jun 1
PMID 28561066
Citations 102
Authors
Affiliations
Soon will be listed here.
Abstract

Autophagy is controlled by AMPK and mTOR, both of which associate with ULK1 and control the production of phosphatidylinositol 3-phosphate (PtdIns3P), a prerequisite for autophagosome formation. Here we report that WIPI3 and WIPI4 scaffold the signal control of autophagy upstream of PtdIns3P production and have a role in the PtdIns3P effector function of WIPI1-WIPI2 at nascent autophagosomes. In response to LKB1-mediated AMPK stimulation, WIPI4-ATG2 is released from a WIPI4-ATG2/AMPK-ULK1 complex and translocates to nascent autophagosomes, controlling their size, to which WIPI3, in complex with FIP200, also contributes. Upstream, WIPI3 associates with AMPK-activated TSC complex at lysosomes, regulating mTOR. Our WIPI interactome analysis reveals the scaffold functions of WIPI proteins interconnecting autophagy signal control and autophagosome formation. Our functional kinase screen uncovers a novel regulatory link between LKB1-mediated AMPK stimulation that produces a direct signal via WIPI4, and we show that the AMPK-related kinases NUAK2 and BRSK2 regulate autophagy through WIPI4.

Citing Articles

Molecular mechanisms of autophagy and implications in liver diseases.

Wu Y, Tan H, Lin J, Shen H, Wang H, Lu G Liver Res. 2025; 7(1):56-70.

PMID: 39959698 PMC: 11792062. DOI: 10.1016/j.livres.2023.02.002.


Structure of the WIPI3/ATG16L1 Complex Reveals the Molecular Basis for the Recruitment of the ATG12~ATG5-ATG16L1 Complex by WIPI3.

Gong X, Wang Y, Zhou Y, Pan L Cells. 2025; 13(24.

PMID: 39768203 PMC: 11727070. DOI: 10.3390/cells13242113.


Mutation in leads to early motor dysfunction and widespread aberrant axon terminals in a beta-propeller protein associated neurodegeneration (BPAN) patient-inspired mouse model.

Meyerink B, Karia K, Rechtzigel M, Patthi P, Edwards A, Howard J bioRxiv. 2025; .

PMID: 39763973 PMC: 11702570. DOI: 10.1101/2024.12.13.628412.


Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment.

Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y Front Immunol. 2024; 15:1506426.

PMID: 39650649 PMC: 11621085. DOI: 10.3389/fimmu.2024.1506426.


Development and validation of the prediction model based on autophagy-associated genes in bronchopulmonary dysplasia.

Liu Q, Zhang M, Xiang Q, He Y, Li F Ann Med. 2024; 56(1):2433677.

PMID: 39611552 PMC: 11610359. DOI: 10.1080/07853890.2024.2433677.


References
1.
Demetriades C, Doumpas N, Teleman A . Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell. 2014; 156(4):786-99. PMC: 4346203. DOI: 10.1016/j.cell.2014.01.024. View

2.
Huang J, Manning B . The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008; 412(2):179-90. PMC: 2735030. DOI: 10.1042/BJ20080281. View

3.
Proikas-Cezanne T, Robenek H . Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes. J Cell Mol Med. 2011; 15(9):2007-10. PMC: 3918056. DOI: 10.1111/j.1582-4934.2011.01339.x. View

4.
Dooley H, Razi M, Polson H, Girardin S, Wilson M, Tooze S . WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell. 2014; 55(2):238-52. PMC: 4104028. DOI: 10.1016/j.molcel.2014.05.021. View

5.
Rubinsztein D, Marino G, Kroemer G . Autophagy and aging. Cell. 2011; 146(5):682-95. DOI: 10.1016/j.cell.2011.07.030. View