» Articles » PMID: 28494941

Efficient Recreation of T(11;22) EWSR1-FLI1 in Human Stem Cells Using CRISPR/Cas9

Overview
Publisher Cell Press
Specialty Cell Biology
Date 2017 May 13
PMID 28494941
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Efficient methodologies for recreating cancer-associated chromosome translocations are in high demand as tools for investigating how such events initiate cancer. The CRISPR/Cas9 system has been used to reconstruct the genetics of these complex rearrangements at native loci while maintaining the architecture and regulatory elements. However, the CRISPR system remains inefficient in human stem cells. Here, we compared three strategies aimed at enhancing the efficiency of the CRISPR-mediated t(11;22) translocation in human stem cells, including mesenchymal and induced pluripotent stem cells: (1) using end-joining DNA processing factors involved in repair mechanisms, or (2) ssODNs to guide the ligation of the double-strand break ends generated by CRISPR/Cas9; and (3) all-in-one plasmid or ribonucleoprotein complex-based approaches. We report that the generation of targeted t(11;22) is significantly increased by using a combination of ribonucleoprotein complexes and ssODNs. The CRISPR/Cas9-mediated generation of targeted t(11;22) in human stem cells opens up new avenues in modeling Ewing sarcoma.

Citing Articles

Discovery of a polymorphic gene fusion via bottom-up chimeric RNA prediction.

Elfman J, Goins L, Heller T, Singh S, Wang Y, Li H Nucleic Acids Res. 2024; 52(8):4409-4421.

PMID: 38587197 PMC: 11077074. DOI: 10.1093/nar/gkae258.


Increasing Gene Editing Efficiency via CRISPR/Cas9- or Cas12a-Mediated Knock-In in Primary Human T Cells.

Kruglova N, Shepelev M Biomedicines. 2024; 12(1).

PMID: 38255224 PMC: 10813735. DOI: 10.3390/biomedicines12010119.


Rapid human genomic DNA cloning into mouse artificial chromosome via direct chromosome transfer from human iPSC and CRISPR/Cas9-mediated translocation.

Miyamoto H, Kobayashi H, Kishima N, Yamazaki K, Hamamichi S, Uno N Nucleic Acids Res. 2024; 52(3):1498-1511.

PMID: 38180813 PMC: 10853801. DOI: 10.1093/nar/gkad1218.


Modeling sarcoma relevant translocations using CRISPR-Cas9 in human embryonic stem derived mesenchymal precursors.

Vanoli F, Antonescu C Genes Chromosomes Cancer. 2023; 62(9):501-509.

PMID: 36965130 PMC: 10725040. DOI: 10.1002/gcc.23141.


From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas.

Schmidt C, Schindele P, Puchta H aBIOTECH. 2022; 1(1):21-31.

PMID: 36305002 PMC: 9584095. DOI: 10.1007/s42994-019-00002-0.


References
1.
Rodriguez R, Rubio R, Menendez P . Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Res. 2011; 22(1):62-77. PMC: 3351912. DOI: 10.1038/cr.2011.157. View

2.
Howard S, Yanez D, Stark J . DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet. 2015; 11(1):e1004943. PMC: 4309583. DOI: 10.1371/journal.pgen.1004943. View

3.
Audebert M, Salles B, Weinfeld M, Calsou P . Involvement of polynucleotide kinase in a poly(ADP-ribose) polymerase-1-dependent DNA double-strand breaks rejoining pathway. J Mol Biol. 2005; 356(2):257-65. DOI: 10.1016/j.jmb.2005.11.028. View

4.
Certo M, Gwiazda K, Kuhar R, Sather B, Curinga G, Mandt T . Coupling endonucleases with DNA end-processing enzymes to drive gene disruption. Nat Methods. 2012; 9(10):973-5. PMC: 3602999. DOI: 10.1038/nmeth.2177. View

5.
Blasco R, Karaca E, Ambrogio C, Cheong T, Karayol E, Minero V . Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 2014; 9(4):1219-27. DOI: 10.1016/j.celrep.2014.10.051. View