» Articles » PMID: 28446510

A Postprandial FGF19-SHP-LSD1 Regulatory Axis mediates Epigenetic Repression of Hepatic autophagy

Overview
Journal EMBO J
Date 2017 Apr 28
PMID 28446510
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Lysosome-mediated autophagy is essential for cellular survival and homeostasis upon nutrient deprivation, but is repressed after feeding. Despite the emerging importance of transcriptional regulation of autophagy by nutrient-sensing factors, the role for epigenetic control is largely unexplored. Here, we show that Small Heterodimer Partner (SHP) mediates postprandial epigenetic repression of hepatic autophagy by recruiting histone demethylase LSD1 in response to a late fed-state hormone, FGF19 (hFGF19, mFGF15). FGF19 treatment or feeding inhibits macroautophagy, including lipophagy, but these effects are blunted in SHP-null mice or LSD1-depleted mice. In addition, feeding-mediated autophagy inhibition is attenuated in FGF15-null mice. Upon FGF19 treatment or feeding, SHP recruits LSD1 to CREB-bound autophagy genes, including Tfeb, resulting in dissociation of CRTC2, LSD1-mediated demethylation of gene-activation histone marks H3K4-me2/3, and subsequent accumulation of repressive histone modifications. Both FXR and SHP inhibit hepatic autophagy interdependently, but while FXR acts early, SHP acts relatively late after feeding, which effectively sustains postprandial inhibition of autophagy. This study demonstrates that the FGF19-SHP-LSD1 axis maintains homeostasis by suppressing unnecessary autophagic breakdown of cellular components, including lipids, under nutrient-rich postprandial conditions.

Citing Articles

Menin maintains lysosomal and mitochondrial homeostasis through epigenetic mechanisms in lung cancer.

Yuan J, Gu G, Jin B, Han Q, Li B, Zhang L Cell Death Dis. 2025; 16(1):163.

PMID: 40057469 PMC: 11890858. DOI: 10.1038/s41419-025-07489-0.


Autophagy modulates physiologic and adaptive response in the liver.

Le T, Truong N, Holterman A Liver Res. 2025; 7(4):304-320.

PMID: 39958781 PMC: 11792069. DOI: 10.1016/j.livres.2023.12.001.


FGF-based drug discovery: advances and challenges.

Chen G, Chen L, Li X, Mohammadi M Nat Rev Drug Discov. 2025; .

PMID: 39875570 DOI: 10.1038/s41573-024-01125-w.


Histone demethylases in autophagy and inflammation.

Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z Cell Commun Signal. 2025; 23(1):24.

PMID: 39806430 PMC: 11727796. DOI: 10.1186/s12964-024-02006-w.


Identification of chikusetsusaponin IVa as a novel lysine-specific demethylase 1 inhibitor that ameliorates high fat diet-induced MASLD in mice.

Liu Y, Luo R, Liu A, Wang J, Hu N, Li W Acta Pharmacol Sin. 2024; 46(3):632-652.

PMID: 39567752 PMC: 11845606. DOI: 10.1038/s41401-024-01412-7.


References
1.
Kerr T, Saeki S, Schneider M, Schaefer K, Berdy S, Redder T . Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev Cell. 2002; 2(6):713-20. PMC: 4010195. DOI: 10.1016/s1534-5807(02)00154-5. View

2.
Kim Y, Fang S, Byun S, Seok S, Kemper B, Kemper J . Farnesoid X receptor-induced lysine-specific histone demethylase reduces hepatic bile acid levels and protects the liver against bile acid toxicity. Hepatology. 2014; 62(1):220-31. PMC: 4480214. DOI: 10.1002/hep.27677. View

3.
Rabinowitz J, White E . Autophagy and metabolism. Science. 2010; 330(6009):1344-8. PMC: 3010857. DOI: 10.1126/science.1193497. View

4.
Byun S, Kim Y, Zhang Y, Kong B, Guo G, Sadoshima J . A postprandial FGF19-SHP-LSD1 regulatory axis mediates epigenetic repression of hepatic autophagy. EMBO J. 2017; 36(12):1755-1769. PMC: 5470039. DOI: 10.15252/embj.201695500. View

5.
Lee J, Wagner M, Xiao R, Kim K, Feng D, Lazar M . Nutrient-sensing nuclear receptors coordinate autophagy. Nature. 2014; 516(7529):112-5. PMC: 4267857. DOI: 10.1038/nature13961. View