» Articles » PMID: 28442765

The GPR139 Reference Agonists 1a and 7c, and Tryptophan and Phenylalanine Share a Common Binding Site

Overview
Journal Sci Rep
Specialty Science
Date 2017 Apr 27
PMID 28442765
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

GPR139 is an orphan G protein-coupled receptor expressed in the brain, in particular in the habenula, hypothalamus and striatum. It has therefore been suggested that GPR139 is a possible target for metabolic disorders and Parkinson's disease. Several surrogate agonist series have been published for GPR139. Two series published by Shi et al. and Dvorak et al. included agonists 1a and 7c respectively, with potencies in the ten-nanomolar range. Furthermore, Isberg et al. and Liu et al. have previously shown that tryptophan (Trp) and phenylalanine (Phe) can activate GPR139 in the hundred-micromolar range. In this study, we produced a mutagenesis-guided model of the GPR139 binding site to form a foundation for future structure-based ligand optimization. Receptor mutants studied in a Ca assay demonstrated that residues F109, H187, W241 and N271, but not E108, are highly important for the activation of GPR139 as predicted by the receptor model. The initial ligand-receptor complex was optimized through free energy perturbation simulations, generating a refined GPR139 model in agreement with experimental data. In summary, the GPR139 reference surrogate agonists 1a and 7c, and the endogenous amino acids L-Trp and L-Phe share a common binding site, as demonstrated by mutagenesis, ligand docking and free energy calculations.

Citing Articles

Alchemical Free Energy Calculations on Membrane-Associated Proteins.

Papadourakis M, Sinenka H, Matricon P, Henin J, Brannigan G, Perez-Benito L J Chem Theory Comput. 2023; 19(21):7437-7458.

PMID: 37902715 PMC: 11017255. DOI: 10.1021/acs.jctc.3c00365.


Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases.

Strassheim D, Sullivan T, Irwin D, Gerasimovskaya E, Lahm T, Klemm D Cells. 2021; 10(12).

PMID: 34943862 PMC: 8699532. DOI: 10.3390/cells10123347.


Deciphering conformational selectivity in the A2A adenosine G protein-coupled receptor by free energy simulations.

Jespers W, Heitman L, IJzerman A, Sotelo E, van Westen G, Aqvist J PLoS Comput Biol. 2021; 17(11):e1009152.

PMID: 34818333 PMC: 8654218. DOI: 10.1371/journal.pcbi.1009152.


The role of orphan receptor GPR139 in neuropsychiatric behavior.

Dao M, Stoveken H, Cao Y, Martemyanov K Neuropsychopharmacology. 2021; 47(4):902-913.

PMID: 33479510 PMC: 8882194. DOI: 10.1038/s41386-021-00962-2.


X-Ray Crystallography and Free Energy Calculations Reveal the Binding Mechanism of A Adenosine Receptor Antagonists.

Jespers W, Verdon G, Azuaje J, Majellaro M, Keranen H, Garcia-Mera X Angew Chem Int Ed Engl. 2020; 59(38):16536-16543.

PMID: 32542862 PMC: 7540567. DOI: 10.1002/anie.202003788.


References
1.
Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W . Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013; 27(3):221-34. DOI: 10.1007/s10822-013-9644-8. View

2.
Friesner R, Murphy R, Repasky M, Frye L, Greenwood J, Halgren T . Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006; 49(21):6177-96. DOI: 10.1021/jm051256o. View

3.
Hu L, Tang P, Eslahi N, Zhou T, Barbosa J, Liu Q . Identification of surrogate agonists and antagonists for orphan G-protein-coupled receptor GPR139. J Biomol Screen. 2009; 14(7):789-97. DOI: 10.1177/1087057109335744. View

4.
Santos R, Ursu O, Gaulton A, Bento A, Donadi R, Bologa C . A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2016; 16(1):19-34. PMC: 6314433. DOI: 10.1038/nrd.2016.230. View

5.
Alexander S, Benson H, Faccenda E, Pawson A, Sharman J, Spedding M . The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol. 2014; 170(8):1459-581. PMC: 3892287. DOI: 10.1111/bph.12445. View