» Articles » PMID: 28431230

Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2017 Apr 22
PMID 28431230
Citations 240
Authors
Affiliations
Soon will be listed here.
Abstract

The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both activities, we determined crystal structures of Francisella novicida Cas12a bound to guide RNA and in complex with an R-loop formed by a non-cleavable guide RNA precursor and a full-length target DNA. Corroborated by biochemical experiments, these structures reveal the mechanisms of guide RNA processing and pre-ordering of the seed sequence in the guide RNA that primes Cas12a for target DNA binding. Furthermore, the R-loop complex structure reveals the strand displacement mechanism that facilitates guide-target hybridization and suggests a mechanism for double-stranded DNA cleavage involving a single active site. Together, these insights advance our mechanistic understanding of Cas12a enzymes and may contribute to further development of genome editing technologies.

Citing Articles

Insight into crRNA Processing in P42S and Application of SmutCas9 in Genome Editing.

Mosterd C, Moineau S Int J Mol Sci. 2025; 26(5).

PMID: 40076628 PMC: 11900481. DOI: 10.3390/ijms26052005.


Molecular insights and rational engineering of a compact CRISPR-Cas effector Cas12h1 with a broad-spectrum PAM.

Zheng W, Li H, Liu M, Wei Y, Liu B, Li Z Signal Transduct Target Ther. 2025; 10(1):66.

PMID: 39955288 PMC: 11830025. DOI: 10.1038/s41392-025-02147-5.


PAM-adjacent DNA flexibility tunes CRISPR-Cas12a off-target binding.

Allen A, Cooper B, Singh J, Rohs R, Qin P Sci Rep. 2025; 15(1):4930.

PMID: 39929897 PMC: 11811290. DOI: 10.1038/s41598-025-87565-9.


PathoGD: an integrative genomics approach to primer and guide RNA design for CRISPR-based diagnostics.

Low S, ONeill M, Kerry W, Wild N, Krysiak M, Nong Y Commun Biol. 2025; 8(1):147.

PMID: 39885339 PMC: 11782503. DOI: 10.1038/s42003-025-07591-1.


'Splice-at-will' Cas12a crRNA engineering enabled direct quantification of ultrashort RNAs.

Fei X, Lei C, Ren W, Liu C Nucleic Acids Res. 2025; 53(2).

PMID: 39831307 PMC: 11744192. DOI: 10.1093/nar/gkaf002.


References
1.
Kelley L, Mezulis S, Yates C, Wass M, Sternberg M . The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015; 10(6):845-58. PMC: 5298202. DOI: 10.1038/nprot.2015.053. View

2.
Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X . The crystal structure of Cpf1 in complex with CRISPR RNA. Nature. 2016; 532(7600):522-6. DOI: 10.1038/nature17944. View

3.
Terwilliger T . SOLVE and RESOLVE: automated structure solution, density modification and model building. J Synchrotron Radiat. 2003; 11(Pt 1):49-52. DOI: 10.1107/s0909049503023938. View

4.
Charpentier E, Marraffini L . Harnessing CRISPR-Cas9 immunity for genetic engineering. Curr Opin Microbiol. 2014; 19:114-119. PMC: 4155128. DOI: 10.1016/j.mib.2014.07.001. View

5.
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W . Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017; 15(3):169-182. PMC: 5851899. DOI: 10.1038/nrmicro.2016.184. View