» Articles » PMID: 28402693

Heparan Sulfate Proteoglycans Regulate Autophagy in Drosophila

Overview
Journal Autophagy
Specialty Cell Biology
Date 2017 Apr 14
PMID 28402693
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Heparan sulfate-modified proteoglycans (HSPGs) are important regulators of signaling and molecular recognition at the cell surface and in the extracellular space. Disruption of HSPG core proteins, HS-synthesis, or HS-degradation can have profound effects on growth, patterning, and cell survival. The Drosophila neuromuscular junction provides a tractable model for understanding the activities of HSPGs at a synapse that displays developmental and activity-dependent plasticity. Muscle cell-specific knockdown of HS biosynthesis disrupted the organization of a specialized postsynaptic membrane, the subsynaptic reticulum (SSR), and affected the number and morphology of mitochondria. We provide evidence that these changes result from a dysregulation of macroautophagy (hereafter referred to as autophagy). Cellular and molecular markers of autophagy are all consistent with an increase in the levels of autophagy in the absence of normal HS-chain biosynthesis and modification. HS production is also required for normal levels of autophagy in the fat body, the central energy storage and nutritional sensing organ in Drosophila. Genetic mosaic analysis indicates that HS-dependent regulation of autophagy occurs non-cell autonomously, consistent with HSPGs influencing this cellular process via signaling in the extracellular space. These findings demonstrate that HS biosynthesis has important regulatory effects on autophagy and that autophagy is critical for normal assembly of postsynaptic membrane specializations.

Citing Articles

Dual roles of exostosin glycosyltransferase 1 in Zika virus infection.

Ling J, Khan A, Denkewitz M, Maccarana M, Lundkvist A, Li J Virulence. 2025; 16(1):2458681.

PMID: 39927690 PMC: 11812395. DOI: 10.1080/21505594.2025.2458681.


Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy.

Mongiat M, Pascal G, Poletto E, Williams D, Iozzo R Proteoglycan Res. 2024; 2(3).

PMID: 39184370 PMC: 11340296. DOI: 10.1002/pgr2.22.


Altering heparan sulfate suppresses cell abnormalities and neuron loss in model of Alzheimer Disease.

Schultheis N, Connell A, Kapral A, Becker R, Mueller R, Shah S iScience. 2024; 27(7):110256.

PMID: 39109174 PMC: 11302002. DOI: 10.1016/j.isci.2024.110256.


Global impact of proteoglycan science on human diseases.

Xie C, Schaefer L, Iozzo R iScience. 2023; 26(11):108095.

PMID: 37867945 PMC: 10589900. DOI: 10.1016/j.isci.2023.108095.


Regulation of autophagy, lipid metabolism, and neurodegenerative pathology by heparan sulfate proteoglycans.

Schultheis N, Becker R, Berhanu G, Kapral A, Roseman M, Shah S Front Genet. 2023; 13:1012706.

PMID: 36699460 PMC: 9870329. DOI: 10.3389/fgene.2022.1012706.


References
1.
Tang G, Gudsnuk K, Kuo S, Cotrina M, Rosoklija G, Sosunov A . Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014; 83(5):1131-43. PMC: 4159743. DOI: 10.1016/j.neuron.2014.07.040. View

2.
Kirkpatrick C, Selleck S . Heparan sulfate proteoglycans at a glance. J Cell Sci. 2007; 120(Pt 11):1829-32. DOI: 10.1242/jcs.03432. View

3.
Cumming R, Simonsen A, Finley K . Quantitative analysis of autophagic activity in Drosophila neural tissues by measuring the turnover rates of pathway substrates. Methods Enzymol. 2009; 451:639-51. DOI: 10.1016/S0076-6879(08)03235-7. View

4.
Duffy J . GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis. 2002; 34(1-2):1-15. DOI: 10.1002/gene.10150. View

5.
Scott R, Schuldiner O, Neufeld T . Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell. 2004; 7(2):167-78. DOI: 10.1016/j.devcel.2004.07.009. View