» Articles » PMID: 28398344

Induction of Functional Dopamine Neurons from Human Astrocytes in Vitro and Mouse Astrocytes in a Parkinson's Disease Model

Abstract

Cell replacement therapies for neurodegenerative disease have focused on transplantation of the cell types affected by the pathological process. Here we describe an alternative strategy for Parkinson's disease in which dopamine neurons are generated by direct conversion of astrocytes. Using three transcription factors, NEUROD1, ASCL1 and LMX1A, and the microRNA miR218, collectively designated NeAL218, we reprogram human astrocytes in vitro, and mouse astrocytes in vivo, into induced dopamine neurons (iDANs). Reprogramming efficiency in vitro is improved by small molecules that promote chromatin remodeling and activate the TGFβ, Shh and Wnt signaling pathways. The reprogramming efficiency of human astrocytes reaches up to 16%, resulting in iDANs with appropriate midbrain markers and excitability. In a mouse model of Parkinson's disease, NeAL218 alone reprograms adult striatal astrocytes into iDANs that are excitable and correct some aspects of motor behavior in vivo, including gait impairments. With further optimization, this approach may enable clinical therapies for Parkinson's disease by delivery of genes rather than cells.

Citing Articles

Reprogramming astrocytes into dopaminergic neurons to restore motor dysfunction in Parkinsons disease model rats.

Liu C, Ying M, Wang A, Liu Y, Chen Y, Ye W Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2025; 49(9):1377-1389.

PMID: 39931768 PMC: 11814384. DOI: 10.11817/j.issn.1672-7347.2024.240078.


Glial Cell Reprogramming in Ischemic Stroke: A Review of Recent Advancements and Translational Challenges.

Gresita A, Hermann D, Boboc I, Doeppner T, Petcu E, Semida G Transl Stroke Res. 2025; .

PMID: 39904845 DOI: 10.1007/s12975-025-01331-7.


The Role of Astrocytes and Alpha-Synuclein in Parkinson's Disease: A Review.

Brash-Arias D, Garcia L, Perez-Estudillo C, Rojas-Duran F, Aranda-Abreu G, Herrera-Covarrubias D NeuroSci. 2024; 5(1):71-86.

PMID: 39483813 PMC: 11523690. DOI: 10.3390/neurosci5010005.


3D model for human glia conversion into subtype-specific neurons, including dopamine neurons.

Giacomoni J, Bruzelius A, Habekost M, Kajtez J, Ottosson D, Fiorenzano A Cell Rep Methods. 2024; 4(9):100845.

PMID: 39236715 PMC: 11440053. DOI: 10.1016/j.crmeth.2024.100845.


Involvement of K3.4 Channel in Parkinson's Disease: A Key Player in the Control of Midbrain and Striatum Differential Vulnerability during Disease Progression?.

Magliocca G, Esposito E, Tufano M, Piccialli I, Rubino V, Tedeschi V Antioxidants (Basel). 2024; 13(8).

PMID: 39199246 PMC: 11351402. DOI: 10.3390/antiox13080999.


References
1.
Brundin P, Strecker R, Lindvall O, Isacson O, Nilsson O, Barbin G . Intracerebral grafting of dopamine neurons. Experimental basis for clinical trials in patients with Parkinson's disease. Ann N Y Acad Sci. 1987; 495:473-96. DOI: 10.1111/j.1749-6632.1987.tb23695.x. View

2.
Pennarossa G, Maffei S, Campagnol M, Tarantini L, Gandolfi F, Brevini T . Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci U S A. 2013; 110(22):8948-53. PMC: 3670366. DOI: 10.1073/pnas.1220637110. View

3.
Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G . In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model. Cell Stem Cell. 2013; 14(2):188-202. PMC: 3967760. DOI: 10.1016/j.stem.2013.12.001. View

4.
Ekstrand M, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E . Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci U S A. 2007; 104(4):1325-30. PMC: 1783140. DOI: 10.1073/pnas.0605208103. View

5.
Heinrich C, Gascon S, Masserdotti G, Lepier A, Sanchez R, Simon-Ebert T . Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nat Protoc. 2011; 6(2):214-28. DOI: 10.1038/nprot.2010.188. View