» Articles » PMID: 28396445

CryoEM Structure of a Prokaryotic Cyclic Nucleotide-gated Ion Channel

Overview
Specialty Science
Date 2017 Apr 12
PMID 28396445
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxyl-terminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from -which shares sequence similarity to eukaryotic CNG and HCN channels-in the presence of a saturating concentration of cAMP. A short S4-S5 linker connects nearby voltage-sensing and pore domains to produce a non-domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies.

Citing Articles

GORK K channel structure and gating vital to informing stomatal engineering.

Zhang X, Carroll W, Nguyen T, Nguyen T, Yang Z, Ma M Nat Commun. 2025; 16(1):1961.

PMID: 40000640 PMC: 11861651. DOI: 10.1038/s41467-025-57287-7.


Mapping the contribution of the C-linker domain to gating polarity in CNBD channels.

Lin J, Chang Y, Tewari D, Cowgill J, Chanda B Biophys J. 2024; 123(14):2176-2184.

PMID: 38678368 PMC: 11309966. DOI: 10.1016/j.bpj.2024.04.022.


Similar Binding Modes of cGMP Analogues Limit Selectivity in Modulating Retinal CNG Channels via the Cyclic Nucleotide-Binding Domain.

Pliushcheuskaya P, Kesh S, Kaufmann E, Wucherpfennig S, Schwede F, Kunze G ACS Chem Neurosci. 2024; 15(8):1652-1668.

PMID: 38579109 PMC: 11027099. DOI: 10.1021/acschemneuro.3c00665.


Over-Production of the Human SLC7A10 in and Functional Assay in Proteoliposomes.

Galluccio M, Mazza T, Scalise M, Tripicchio M, Scarpelli M, Tolomeo M Int J Mol Sci. 2024; 25(1).

PMID: 38203703 PMC: 10779382. DOI: 10.3390/ijms25010536.


Exploring Flexibility and Folding Patterns Throughout Time in Voltage Sensors.

Garcia-Morales A, Balleza D J Mol Evol. 2023; 91(6):819-836.

PMID: 37955698 DOI: 10.1007/s00239-023-10140-1.


References
1.
Ludtke S, Baldwin P, Chiu W . EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol. 1999; 128(1):82-97. DOI: 10.1006/jsbi.1999.4174. View

2.
Lee C, MacKinnon R . Structures of the Human HCN1 Hyperpolarization-Activated Channel. Cell. 2017; 168(1-2):111-120.e11. PMC: 5496774. DOI: 10.1016/j.cell.2016.12.023. View

3.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View

4.
Zagotta W, Olivier N, Black K, Young E, Olson R, Gouaux E . Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature. 2003; 425(6954):200-5. DOI: 10.1038/nature01922. View

5.
Wainger B, DeGennaro M, Santoro B, Siegelbaum S, Tibbs G . Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature. 2001; 411(6839):805-10. DOI: 10.1038/35081088. View